Programme
 
    The Mechanical Engineering track of the Bachelor in Engineering offers the following programme:
Year 1 introduces computer-aided design, mathematics, technical mechanics, thermodynamics.
Year 2 adds machine design and fluid mechanics. Semester four is dedicated to mobility. 
Year 3 introduces courses in business management and manufacturing. The last semester includes a bachelor thesis, chosen in line with professional goals.
Academic Contents
Course offer for Filière Maschinenbau, Semestre 1 (2025-2026 Winter)
- 
                    Details- Course title: Mathematik I
- Number of ECTS: 6
- Course code: BENG-1
- Module(s): Mathematik I
- Language: FR, EN
- Mandatory: Yes
 
- 
                    ObjectivesLes cours de mathématiques I a pour but de fournir aux étudiants les bases nécessaires entre autre en calcul vectoriel, en calcul de nombre complexes, et en calcul différentiel et intégral de fonctions d’une et de plusieurs variables pour la maîtrise des application de ces notions en sciences de l’ingénieur 
- 
                    Course learning outcomesL’ étudiant(e) ayant suivi avec succès le cours de mathématiques I est capable de: 
 · * comprendre et utiliser le langage mathématique de base des disciplines concernées
 · * résoudre des exercices d’application
 · * appliquer les notions à des problèmes-type en science de l’ingénieur
- 
                    DescriptionCalcul vectoriel
 – Somme vectorielle; Multiplication scalaire
 – Produit scalaire; Produit vectoriel; Produit mixte
 Nombres complexes
 – Définition et Représentation géométrique
 – Addition; Soustraction; Multiplication; Division; Puissances et Racines
 – Forme ordinaire, Forme trigonométrique et forme exponentielle
 Fonctions de plusieurs variables-Dérivées partielles
 – Dérivées partielles du premier ordre et ordre supérieur
 – Différentielle totale
 – Calcul d’erreur
 – Extremums d’une fonction de deux variables
 
- 
                    AssessmentPrestation et Examen
- 
                    Details- Course title: Physics
- Number of ECTS: 5
- Course code: BENG-150
- Module(s): Physics
- Language: EN
- Mandatory: Yes
 
- 
                    ObjectivesThis course introduces fundamental principles of physics with a focus on applications in engineering. Topics include mechanics, thermodynamics, electromagnetism and waves. Emphasis is placed on problem-solving, conceptual understanding, and real-world engineering applications. 
- 
                    Course learning outcomesBy the end of the course, students will be able to:
 · Understand and apply Newtonian mechanics
 · Understand and apply energy and momentum conservation laws.
 · Understand wave phenomena and basic optics.
 · Understand and apply the principles of thermodynamics and heat transfer.
 · Describe electric and magnetic fields and their applications.
- 
                    DescriptionMotion in 1D and 3D; Newton’s laws; Work and energy conservation; Linear momentum conservation; Rotation and angular momentum; Oscillations, waves, and superposition; Kinetic theory of gases and laws of thermodynamics; Electricity and magnetism.
- 
                    AssessmentMidterm exam (written) – Tentative date: 21.11.2025 (1/3 of final mark); Final written exam (2/3 of the final mark). Retakes will be conducted as oral exams.
- 
                    NotePhysics for Scientists and Engineers (Tipler and Mosca) The Feynman Lectures on Physics Gerthsen Physik
- 
                    Details- Course title: Technische Mechanik I
- Number of ECTS: 5
- Course code: BENG-4
- Module(s): Technische Mechanik I
- Language: EN
- Mandatory: Yes
 
- 
                    ObjectivesStudents understand the fundamentals of statics and can apply this knowledge in practical tasks. 
- 
                    Course learning outcomesStudents are able to calculate static loads on rigid bodies.
 They can determine centers of gravity, solve central force systems, and determine step sizes on beams.
 
- 
                    DescriptionThe lecture provides an introduction to the fundamentals of statics.
 Students will learn about the following topics:
 – Basic concepts of statics of rigid bodies
 – Plane force systems
 – Systems of rigid discs
 – Calculation of the position of the center of gravity
 – Introduction to spatial statics
 – Calculation of forces in the nodes of trusses
 – Friction
 – Internal forces in beams
 After attending the lecture, students will be able to solve simple calculation tasks that form the basis for engineering work.
 
- 
                    AssessmentWritten Examination (70%) and Mid Term Assessment (30%)
 
- 
                    NoteEngineering Mechanics: Statics by Hibbeler
 (Additional exercises will be given in the classroom)
 
- 
                    Details- Course title: Informatik I / Programming for Engineers
- Number of ECTS: 5
- Course code: BENG-5
- Module(s): Informatik I / Programming for Engineers
- Language: EN
- Mandatory: Yes
 
- 
                    ObjectivesThis course offers a comprehensive introduction to programming fundamentals using Python, emphasizing practical application through hands-on workshops. Students will learn core concepts such as control flow, data structures, and algorithms, progressing to object-oriented programming, file I/O, and interacting with APIs. The curriculum culminates in project-based learning, applying Python to real-world scenarios like sentiment analysis and signal processing. 
- 
                    Course learning outcomesUpon successful completion of this course, students will be able to:
 – Develop functional Python programs by applying core principles, including variables, control flow (loops and conditionals), and functions to create organized, logical code.
 – Effectively use and manipulate Python’s core data structures, such as lists, dictionaries, and arrays, and implement fundamental algorithms for processing data.
 – Structure code using object-oriented programming (OOP) principles, perform file I/O operations to read and write data, and interact with external web APIs to fetch data.
 – Set up a Python development environment and use essential software development tools, including GitHub for version control and collaborative code management.
 – Design, develop, and present a complete software project that applies course concepts to a practical, real-world scenario such as sentiment analysis or signal processing.
 
- 
                    DescriptionThis course offers a comprehensive introduction to programming fundamentals using Python, emphasizing practical application through hands-on workshops. Students will learn core concepts such as control flow, data structures, and algorithms, progressing to object-oriented programming, file I/O, and interacting with APIs. The curriculum culminates in project-based learning, applying Python to real-world scenarios like sentiment analysis and signal processing.
- 
                    AssessmentProject presentation and oral examination based on the project.
- 
                    Details- Course title: CAD Mechanical Engineering
- Number of ECTS: 5
- Course code: BENG-144
- Module(s): CAD Mechanical Engineering
- Language: EN, FR
- Mandatory: Yes
 
- 
                    ObjectivesThe main objectives are: 
 – Development of a professional knowledge in technical communication tools available in actual design offices. The focus will be on understanding the different methodology of numerical model creation, using full 3D parametric capabilities.
 – Generation, Dimensioning and tolerancing of parts and systems.
 – Comprehension and production of Engineering drawings for use in different Engineering specialisations
 
- 
                    Course learning outcomesThe students in the defined scope of the course can:
 Professionally work with a commonly used commercial CAD software (Inventor or Revit) in order to generate 3D Models (feature based and parametric), Assembly systems and Engineering Drawings.
 Understand various capabilities and limitations of CAD software in different industries (Mechanical and Civil).
 Generate parametric design of Products and Systems including sustainability constraints, dimensioning and tolerancing, validation and optimization of systems using simulation. The concept of virtual factory will be introduced (Manufacturing Production process) and various technology of Rapid Prototyping.
 Communicate technical concepts using industrial modern tools, and to understand the various standards and practices in the field of technical engineering drawings. Students will be able to generate detailed and complete simple engineering systems creating engineering drawings.
 As this course will address future Mechanical and Civil Engineers, both CAD application software will be reviewed. The learning targets of this course are:
 To understand the concept of functional numerical CAD models based on PLM platform or BIM technology for a collaborative development of industrial systems / buildings. For mechanical engineering, the most important aspects of the virtual product development using Computer Aided Engineering will be reviewed: Concept design, Parametric Modelling, Digital manufacturing and Production process, as well as Rapid prototyping technology.
 To develop a professional knowledge of a commonly used commercial CAD software. CAD software is broadly used in various Engineering offices and the development of such commercial software is in perpetual evolution. CAD is mainly used for the generation of 3D systems and respective engineering drawings, but it is also at the centre of the Product LifeCycle Management (PLM) to integrate various capabilities such as structural simulation (Computer Aided Engineering – CAE), manufacturing (Computer Aided Manufacturing – CAM), Realistic imaging (rendering), Rapid prototyping and Document management.
 To generate basic 3D models and engineering 2D drawings. The students will learn to create engineering drawings and continue using most advanced tools to generate complex system representations. The students will understand the rules of engineering graphics in order to read, generate and understand engineered concepts.
 
- 
                    DescriptionEngineering drawings: (1 ECTS – Common)
 Drawing convention / Principles of Orthographic Projection
 Multiple Views drawing
 Sectional and auxiliary views
 Axonometry (Isometric & Dimetric projection)
 Dimensions and tolerances
 Geometric dimensioning and tolerancing (GDT)
 Functional dimensioning (Definition of part function)
 Fasteners representation & definition
 Surface roughness & Weldment symbol
 Computer Aided Design: (Inventor) (4 ECTS – Specific)
 Introduction to Inventor
 Sketch / Solid based featuring
 Parameters – Equation – Parametric design
 Sheet metal
 Frame generator
 Assemblies / Bill of Material
 Weldment
 Drawings
 Presentation / Explosion / Rendering
 CAE Simulations / Motion & FEA
 Computer Aided Design: (Autocad & Revit) (4 ECTS – Specific)
 1) Autocad:
 2D / Creation of basics drawings (Draw / Modification / Layers / Blocks/ Constraints / Prints & Plot)
 2) Revit:
 Introduction to Building Information Modelling
 Revit Workspace, interface, and file’s format
 General setup – levels and view plan – section and elevation – external reference, selection filter – material
 3D Building models elements:
 Walls, floors, roofs, openings, columns, and beams
 Ceilings, stairs, ramp, railings, windows, and doors
 3D volume in place, Site and Toposurfaces, object library online
 Rooms
 Curtain walls, floors with RoomFinishing,
 2D annotations: lines, dimensions, tags, text, hatches and other 2D tools
 2D/3D Views setup, Details views, animations, solar study.
 Pages setup
 Object’s family: parameters – examples of family’s modification
 Quantity takeoff
 
- 
                    AssessmentFinal exam (100%)
- 
                    NoteLecture scripts [moodle]
 Intranet site developed specifically.
 Resources sites (Moodle, Autodesk and YouTube tutorials)
 Free access to educational software licences
 Inventor Professional Revit Documentation and Online help
 Ascent Productivity Platform
 MemoTech – Dessin Technique et norm CAO – C.Hazard
 Precis de construction mecanique – R.Quatremer – Nathan
 Guide du Dessinateur industriel – A.Chevalier – Hachette
 Technisches Zeichnen – Hoischen – Edition Cornelsen / Girardet
 “Fundamentals of Machine Elements, Third Edition: SI Version”, Steven R. Schmid, Bernard J. Hamrock, Bo. O. Jacobson.
 “Fundamentals of Machine Components Design”, R. C. Juvinall, Kurt M. Marshek.
 „Roloff/Matek Maschinenelemente“, Herbert Wittel, Dieter Muhs, Dieter Jannasch, Joachim.Voßiek.
 “Engineering Drawing and Design”, 5th Edition, David A. Madsen, David P. Madsen
 
- 
                    Details- Course title: Elektrotechnik I
- Number of ECTS: 5
- Course code: BENG-7
- Module(s): Elektrotechnik I
- Language:
- Mandatory: Yes
 
- 
                    ObjectivesInitier les étudiants aux principes fondamentaux et aux méthodes de calcul en rapport avec l’énergie électrique, les montages et circuits électriques, magnétiques et électromagnétiques, à courant continu. 
- 
                    DescriptionVorlesungsinhalte (jeweils ein getrenntes Kapitel):
 Kapitel 1: Elektrizität und Aufbau der Materie
 – Grundbegriffe der Elektrizitätslehre, Einheiten
 – Elektrischer Widerstand und Ohm‘sches Gesetz, Widerstandsschaltungen
 – Grundlagen der Netzwerkberechnungen
 – Verfahren: Ersatzspannungsquelle, Überlagerung, Maschenstrom,
 Knotenpunktpotential
 – Energie und Leistung
 Kapitel 2:
 – Elektrostatisches Feld, Verschiebungsflussdichte, elektrische. Feldstärke
 – Kondensatoren, Ladung, Entladung
 Kapitel 3:
 – Magnetisches Feld, magn. Feldstärke, Fluss, Flussdichte
 – Kraft im Magnetfeld
 – Magnetischer Kreis
 Praktika: (kann durch praktische Übungen ersetzt werden)
 – Netzwerke
 – Kraft im Magnetfeld
 
- 
                    AssessmentTP/TD – Examen 120 min (80%-100%) Prestations facultatives 90 min (20%)
- 
                    NoteOn moodle Alexander von Weiss: Allgemeine Elektrotechnik 
Course offer for Filière Maschinenbau, Semestre 2 (2024-2025 Summer)
- 
                    Details- Course title: Mathematik II
- Number of ECTS: 6
- Course code: BENG-10
- Module(s): Mathematik II
- Language: FR
- Mandatory: Yes
 
- 
                    ObjectivesLes cours de mathématiques II a pout but de fournir aux étudiants les bases 
 nécessaires entre autre en calcul différentiel et intégral de fonctions d’une et de
 plusieurs variables, en équations différentielles et en algèbre linéaire pour la
 maîtrise des application de ces notions en sciences de l’ingénieur
 
- 
                    Course learning outcomesL’ étudiant(e) ayant suivi avec succès les cours de mathématiques II est capable de : comprendre et utiliser le langage mathématique de base des disciplines concernées, résoudre des exercices d’application, appliquer les notions à des problèmes-type en science de l’ingénieur
- 
                    Description1. Intégrales multiples
 o Intégrales doubles en coordonnées cartésiennes et polaires
 Applications : Aire; centre de gravité et moment d’inertie d’une surface
 o Intégrales triples en coordonnées cartésiennes, cylindriques et sphériques
 Applications : Volume; centre de gravité et moment d’inertie d’un corps
 2. Equations différentielles
 o Equations différentielles du 1er ordre
 Equation diff. à variables séparables
 Equations diff. homogènes
 Equations diff. linéaires et équations diff. de Bernoulli
 o Equations différentielles du 2nd ordre
 Equations diff. du 2. ordre se ramenant à des équations diff. du 1.ordre
 Equations diff. du 2. ordre à coefficients constants
 3. Calcul matriciel
 o Notions de matrices et opérations matricielles (Somme; Multiplication; Transposée)
 o Déterminants (Règle de Cramer; Règle de Sarrus; Mineurs d’un déterminant)
 o Matrice régulière et singulière; Matrice adjointe et inverse
 o Systèmes d’équations linéaires à l’aide de la méthode par inversion de la matrice et à l’aide de la méthode de Gauss
 Valeurs et vecteurs propres
 
- 
                    AssessmentPrestation et Examen
- 
                    Details- Course title: Technische Mechanik II
- Number of ECTS: 5
- Course code: BENG-11
- Module(s): Technische Mechanik II
- Language: DE, EN
- Mandatory: Yes
 
- 
                    ObjectivesTheoretische Grundlagen und Berechnungsmethoden zum Verständnis der Wirkung von äußeren Belastungen auf die Verformung elastischer Körper. 
- 
                    Course learning outcomesDer Studierende versteht den Zusammenhang zwischen äußerer Belastung und Verformung elastischer Körper und kann die mathematischen Beziehung unter Berücksichtigung des Stoffgesetzes nachvollziehen. Sie/Er kann den Spannungszustand ebener Systemen berechnen. Sie / Er beherrscht die Berechnung des Spannungszustandes und Verformungszustandes für Stab- und Biegebalken. .
- 
                    DescriptionEinführung in die Elastostatik
 Zug und Druck in Stäben:
 Spannung, Dehnung und Stoffgesetz am Einzelstab, in stat. Bestimmten und unbestimmten System
 Spannungszustand:
 Spannungsvektor / Spannungstensor
 Ebener Spannungszustand
 Hauptspannungen,
 Mohrscher Spannungskreis
 Biegung:
 Normalspannung infolge Biegung
 Flächenträgheitsmomente – Verschiebung der Bezugsachsen – Hauptachsen
 Biegelinie ebener Systeme
 Schiefe Biegung, Kernquerschnitt
 Schubspannung
 Infolge Querkraft
 In dünnwandigen Querschnitten
 
- 
                    AssessmentKlausur und Übungsaufgaben zum Selbststudium – Zulassung zur Klausur nur mit anerkannten Übungsaufgaben
- 
                    NoteVorlesungsunterstützende Arbeitsblätter Technische Mechanik 2 – Elastostatik; Gross, Hauger, Schröder, Wall; 11. Auflage Springer 2012
 Engineering Mechanics 2 – Mechanics of Materials; Gross, Hauger, Schröder, Wall; 1.Auflage Springer 2011
 Technische Mechanik- Festigkeitslehre, Holzmann, Meyer, Schumpich; 12. Auflage – Springer Vieweg Verlag 2016
 
- 
                    Details- Course title: Informatik II
- Number of ECTS: 4
- Course code: BENG-12
- Module(s): Informatik II
- Language: EN, DE
- Mandatory: Yes
 
- 
                    ObjectivesAdvanced lecture based on Informatik I 
- 
                    DescriptionLernstoff: weitere Grundelemente wie u.a. benutzerdefinierte Variablentypen (UDT bzw. Strukturen), Dateien (Sequentielle Dateien, Direktzugriffsdateien, Binäre Dateien) und Anwendungsprojekte.
 Programmieren von Anwendungsbeispielen.
 Die jetzige Vorlesung Informatik II wird inhaltlich etwa überarbeitet und im Volumen erweitert werden.
 
- 
                    AssessmentProgrammerstellung in Vorlesung Schriftliche Prüfung
- 
                    Details- Course title: Design Project Based Learning
- Number of ECTS: 3
- Course code: BENG-13
- Module(s): Design Project Based Learning
- Language: EN
- Mandatory: Yes
 
- 
                    ObjectivesEnhance multidisciplinary skills and interests for the students in the interdisciplinary fields of engineering trough Project Based Learning tools 
- 
                    Course learning outcomesThe students in the defined scope of the course can:
 Discover different fields of Engineering (mainly Mechanical and Civil Engineering)
 Develop and apply basics knowledge and skills from multidisciplinary fields.
 Define, Develop, Manufacture, Assemble Optimise technical designs and solutions.
 Acquire knowledge though self-study.
 Plan, Organise and Manage projects and develop team working.
 Increase Problem-solving skills; develop engineering method to develop systems, critical thinking, and analysis.
 Report on self-assignment, document technical solutions
 
- 
                    DescriptionDesign Project Based Learning is an engineering technical challenge based on project-based learning concept, used to enhance multidisciplinary skills, motivation and interests for the students. Students will define, develop, manage, realise, and present in groups an Inter-disciplinary project, involving different aspects of engineering (Mechanical & Civil construction). Although the students do not have complete knowledge of different engineering fields, it is required that they demonstrate initiative and motivation to manage the project. The focus will be put on the practical aspect of the project. An introduction to Engineering Drawings, CAD & desktop Manufacturing tools (Rapid Prototyping via 3D Printing and Laser cutting) will be done. This project is developed using various techniques of Problem Based Learning. The project will end with a competition where the different groups will evaluate their design and systems against each other in a convivial and competitive way.
- 
                    AssessmentProject assessment: Report, Presentation and Competition
 Peer assessment between teams and inside teams
 Team Personal Assessment
 
- 
                    NoteLecture script (Moodle) Software documentation Autodesk inventor Documentation and Online help
 Machine documentation for desktop manufacturing
 MemoTech – Dessin Technique et norm CAO – C.Hazard
 Precis de construction mecanique – R.Quatremer – Nathan
 Guide du Dessinateur industriel – A.Chevalier – Hachette
 Technisches Zeichnen – Hoischen – Edition Cornelsen / Girardet
 “Fundamentals of Machine Elements, Third Edition: SI Version”, Steven R. Schmid, Bernard J. Hamrock, Bo. O. Jacobson.
 “Fundamentals of Machine Components Design”, R. C. Juvinall, Kurt M. Marshek.
 „Roloff/Matek Maschinenelemente“, Herbert Wittel, Dieter Muhs, Dieter Jannasch, Joachim.Voßiek.
 “Engineering Drawing and Design”, 5th Edition, David A. Madsen, David P. Madsen
 
- 
                    Details- Course title: Thermodynamik I
- Number of ECTS: 5
- Course code: BENG-20
- Module(s): Thermodynamik I
- Language: DE
- Mandatory: Yes
 
- 
                    ObjectivesZiel der Vorlesung ist es die Grundlagen der Thermodynamik zu vermittels und auf technische Energieumwandlungs- Prozesse anzuwenden um diese analysieren und auslegen zu können. 
- 
                    Course learning outcomesDer Student lernt innerhalb der Vorlesung mit den Begriffen:
 Thermodynamisches System
 Thermodynamische Zustands- und Prozessgröße
 Thermodynamische Zustandsgleichung
 umzugehen. Durch Anwendung der thermodynamischen Hauptsätze wird der Student in die Lage versetzt technische Energieumwandlungsprozesse analysieren, bewerten und auslegen zu können. Nach Behandlung des Modelsystem „Ideales Gas“ wird das gelernte auf rechtläufige thermodynamische Kreisprozesse zur Beschreibung von Wärmekraftmaschinen angewendet.
 
- 
                    DescriptionDie Vorlesung ist in folgende Kapitel untergliedert:
 Grundlagen der Thermodynamik, System, Zustands- und Prozessgössen, Zustandsgleichungen
 Material- und Stoffeigenschaften
 1. Hauptsatz der Thermodynamik
 2. Hauptsatz der Thermodynamik
 Ideales Gas
 Thermischen Mschinen
 
- 
                    AssessmentKlausur
 Zulassung zur Klausur: Zusätzlich zu den Übungsblättern werden an die Studenten Aufgabenblätter mir Verständnisfrage verteilt. Diese Aufgaben müssen die Studenten im Rahmen der Übung lösen und die Lösungen abgegeben. Die Lösungen werden korrigiert und bewertet Damit lassen sich Punkte sammeln. Um zur Klausur zugelassen zu werden müssen mindestens 65 % der Gesamtsumme der Punkte aller Aufgabenblätter erreicht werden. Für Wiederholungs-Prüfungen bleibt die früher erworbene Prüfungszulassung erhalten.
 
- 
                    NotePräsentationsfolien, Tafelanschrieb, Übungsaufgaben Thermodynamik, Langeheinecke, Springer Verlag
 Technische Thermodynamik, Cerbe, Hoffmann, Hanser Verlag
 Grundlagen der Technischen Thermodynamik, Döhring, Springer
 Thermodynamik, Baehr, Springer Verlag
 Thermodynamik, Mayinger, Springer Verlag
 
- 
                    Details- Course title: Werkstoffkunde
- Number of ECTS: 6
- Course code: BENG-21
- Module(s): Werkstoffkunde
- Language: DE
- Mandatory: Yes
 
- 
                    ObjectivesThe course is considered as a general introduction to material science. The purpose of the course is to impart a general knowledge about the behaviour of metals and alloys in applied engineering 
 The main part of the course provides an introduction to the world of metals.
 From ore to steel, structure of metals up to application examples.
 An excursion to the steel plant of Arcelor Mittal in Esch Belval and the laboratory of the university is also foreseen.
 
- 
                    DescriptionMain Topics:
 – Microstructure and properties of metals (ferrous and nonferrous), ceramics, synthetic materials (plastics)
 – Heat treatment of ferrous materials
 – Fatigue behaviour, corrosion, welding, and material testing.
 – Ceramics
 – Synthetic materials
 
- 
                    AssessmentWritten exam (German / English)
Course offer for Filière Maschinenbau, Semestre 3 (2025-2026 Winter)
- 
                    Details- Course title: Mathematik III
- Number of ECTS: 6
- Course code: BENG-50
- Module(s): Mathematik III
- Language: DE, EN
- Mandatory: Yes
 
- 
                    ObjectivesVermitteln des Grundwissens verschiedener Methoden der höheren Mathematik und der Statistik und Wahrscheinlichkeitsrechnung 
- 
                    Course learning outcomesDie HörerInnen
 entwickeln ein grundlegendes Verständnis für die vorgestellten Methoden der höheren Mathematik und der Statistik und Wahrscheinlichkeitsrechnung.
 können die vorgestellten Methoden der höheren Mathematik und die der Statistik und Wahrscheinlichkeitsrechnung beschreiben.
 können die vorgestellten Methoden der höheren Mathematik und die der Statistik und Wahrscheinlichkeitsrechnung anwenden um technische Probleme zu lösen.
 
- 
                    DescriptionDas Modul ist zweigeteilt in Methoden der höheren Mathematik und Statistik und Wahrscheinlichkeitsrechnung.
 Inhalte Teil Methoden der höheren Mathematik: Mathematische Beweisführung; Folgen und unendliche Reihen; Mac-Laurin-, Taylor- und Fourier-Reihen; Laplace-Transformation und ihre Anwendungen.
 Inhalte Teil Statistik und Wahrscheinlichkeitsrechnung: Häufigkeitsverteilungen; Maße der zentralen Tendenz; Maße der Streuung; Elementare Wahrscheinlichkeitstheorie; Binomial-, Normal-, Hypergeometrisch- und Poisson-Verteilung; Elementare Stichprobentheorie; Statistische Schätztheorie; Statistische Entscheidungstheorie; Theorie der kleinen Stichproben; Chi-Quadrat-Test; Kurvenanpassung mit der Methode der kleinsten Quadrate; Korrelationstheorie.
 
- 
                    AssessmentDie Vorlesung wird in den Teilen Methoden der höheren Mathematik und Statistik und Wahrscheinlichkeitsrechnung durchgeführt, welche jeweils durch eine Mitarbeitskontrolle abgeschlossen werden. Die Noten dieser Tests tragen bis zu 20% zur Gesamtnote bei. Die Gesamtnote setzt sich dann aus den Punkten der 3-stündigen Semesterprüfung und den erreichten Punkten der beiden Tests zusammen.
- 
                    Note
 Mathematik für Ingenieure und Naturwissenschaftler, Band 1, 2 und 3, Lothar Papula, Verlag Viewegs (DE)
 Vorlesungsunterlagen mit Videos und Beispiele werden in Moodle zur Verfügung gestellt.
 Engineering Mathematics, Stroud and Booth, Palgrave (EN)
 Advanced Engineering Mathematics, Zill Cullen, Jones Bartlett (EN)
 Statistik – Das Lehrbuch, Spiegel und Stephens, mitp UTB Verlag (DE)
 Statistics – Spiegel and Stephens, Schaum’s Outlines, McGrawHill (EN)
 Wahrscheinlichkeitsrechnung und Statistik, Sachs, Hanser (DE)
 
- 
                    Details- Course title: Technische Mechanik III
- Number of ECTS: 5
- Course code: BENG-51
- Module(s): Technische Mechanik III
- Language: FR
- Mandatory: Yes
 
- 
                    ObjectivesCompletion of statics and strength of materials and introduction to dynamics | Abschluss der Statik Festigkeitslehre und Einführung in die Dynamik 
- 
                    Course learning outcomesDimensioning of beam structures | Dimensionierung von Balkenstrukturen
 Dynamics of a point mass and rigid bodies, single-mass vibration | Kenntnis der Kinetik des Massepunktes und des starren Körpers, Einmassenschwinger
 
- 
                    DescriptionStatically Indeterminate Structures |Statisch unbestimmte Systeme
 Torsion of Prismatic Bars | Torsion prismatischer Stäbe
 Shear Stresses caused by shear force | Schubbeanspruchung durch Querkräfte
 Compound Stresses |Haupt- und Vergleichspannungen, Zusammengesetzte Beanspruchung
 Stability problems |Knicken und Beulen
 Rotationally symmetric stress in shells of revolution | Rotationssymmetrischer Spannungszustand in Scheiben
 Motion of a PointMass | Bewegung des Massepunktes
 Kinematics and Kinetics |Kinetik und Kinematik
 Dynamics of Systems of Point Masses |Kinetik eines Systems von Massepunkten
 Dynamics of Rigid Bodies.| Bewegung des starren Körpers
 Principles of Mechanics | Prinzipien der Mechanik
 Vibrations | Einmassenschwinger
 
- 
                    AssessmentWriten exam, 120min + grade homework/project |Schriftl. Examen , 120 min + benotete Hausaufgaben. The repartition of the final mark is: 80% exam, 20% graded homework for winter session. In summer session 100% retake exam. 
- 
                    NoteGross, Dietmar Hauger, Werner Schröder, Jörg Wall, Wolfgang Bonet, Javier. (2018). Engineering Mechanics 2. 10.1007/978-3-662-56272-7.
 Holzmann, Meyer, Schumpich, Technische Mechanik, Festigkeitslehre, Springer Vieweg, ISBN 978-3-658-14722-8
 Gross, Dietmar Hauger, Werner Schröder, Jörg Wall, Wolfgang Govindjee, Sanjay. (2011). Engineering Mechanics 3, Dynamics. 10.1007/978-3-642-14019-8.
 Gross, Hauger, Schröder, Wall, Technische Mechanik 3, Kinetik, Springer Vieweg, ISBN 978-3-642-29528-7
 
- 
                    Details- Course title: Fertigungstechnik I
- Number of ECTS: 5
- Course code: BENG-42
- Module(s): Fertigungstechnik I
- Language: DE
- Mandatory: Yes
 
- 
                    Course learning outcomesNach dem Besuch dieses Kurses können die Studenten die wichtigsten Fertigungstechnologien benennen und nach der Struktur von DIN 8580 einordnen. Sie kennen die zugehörigen industriellen Prozessschritte und wenden die Klassifizierung der Technologien nach DIN 8580 an, wie z.B. Urformung, Umformen, Trennen, und Fügen. Sie sind in der Lage, alternative Fertigungsverfahren zu benennen und können bei gegebenen Restriktionen Unterschiede erläutern.
 Die Studierenden können den Stand der Technik in der Fertigung auflisten und beschreiben. Die Studierenden verstehen die Auswirkungen der Fertigung auf Kosten, Qualität und Energie, was sie in die Lage versetzt, die Möglichkeiten der Fertigung zu wiederholen.
 Die Studenten verstehen können die fertigungstechnischen Prozesse und Verfahren erklären. Sie haben die Verfahren zur Planung bzw. zum Aufbau von Fertigungsanlagen verstanden.
 
 Auf der Grundlage dieses technologischen Verständnisses sind die Studierenden in der Lage, die Auswahl und Planung von Fertigungsprozessen zu erläutern und geeignete Fertigungs- und Montagetechnologien zu identifizieren und auszuwählen.
 Nach dem Besuch dieses Kurses können die Studenten den Fertigungsablauf und die wichtigsten Fertigungstechnologien in einem modernen Unternehmen verstehen, so dass sie dieses Wissen auch auf ein neues Umfeld übertragen und anwenden können.
 
- 
                    DescriptionDiese Fertigungstechnologien und ihr spezifischer Einsatz von Ressourcen werden erörtert:
 – Urformen (Gießen, Sintern, Strangpressen, additive Fertigung, …)
 – Umformung (Massivumformung, Blechumformung, Ziehen, Biegen, …)
 – Trennen (Trennverfahren mit geometrisch bestimmter Schneide: Drehen, Fräsen, Trennverfahren mit geometrisch unbestimmter Schneide Schleifen, …)
 – Beschichten (Reinigen, Verzinken, Lackieren, …)
 – Fügen (Schweißen, Schrauben, Kleben)
 – Manuelle und automatisierte Montageprozesse
 – Planung und Management der industriellen Produktion (Fertigung und Montage)
 
- 
                    AssessmentSchriftliches Examen
- 
                    NoteVorlesungsbegleitendes Script Im Script jeweils angegeben 
- 
                    Details- Course title: Fluid Mechanics
- Number of ECTS: 4
- Course code: BENG-43
- Module(s): Fluid Mechanics
- Language: DE, EN
- Mandatory: Yes
 
- 
                    ObjectivesThe course provides an introduction to basic concepts of hydrostatics and dynamics of incompressible fluids. Furthermore, Bernoulli’s principle is addressed to describe a streaming fluid with its pressure and velocity distribution. Hereafter, the course extends above indicated subjects by conservation of momentum and laminar and turbulent flow through pipes and open channels. 
 
- 
                    Course learning outcomesThe participants will be able to analyse pressure distributions of static fluids and to evaluate the relationship between pressure, geodetic height and velocity of fluids. The participants will be able to estimate the flow behaviour under the influence of forces acting and pressure losses of pipe flows.
- 
                    DescriptionIntroduction:
 Properties of liquids and gases
 Hydrostatics
 Static pressure
 Applications
 Hydrodynamics:
 Kinematic of fluids
 Conservation of mass
 Bernoulli’s principle
 Applications
 Based on the above-mentioned principles, he course describes the flow of in-compressible fluids driven by forces such as gravity and pressure. Furthermore, it includes correlations to estimate the pressure loss for pipe flows under various flow conditions:
 Conservation of momentum
 Laminar flow
 Turbulent flow
 
- 
                    AssessmentWritten examination (120 min)
- 
                    NoteLecture and exercise script including solutions is provided Further literature is to be found in the script. 
- 
                    Details- Course title: Machine Design Elements I
- Number of ECTS: 3
- Course code: BENG-44
- Module(s): Machine Design I
- Language: EN
- Mandatory: Yes
 
- 
                    ObjectivesThe objectives of the course are: 
 To gain knowledge of the design of machine elements in the scope of the course
 to introduce and use advanced design methods of mechanical parts and systems, using CAD CAE
 to build base student knowledge of machine design, which is needed for their projects applied in mechanical construction projects
 
- 
                    Course learning outcomesThe student in the defined scope of the course is able to:
 carry out a design process of mechanical parts and systems and generate respective engineering drawings in a CAD software
 design machine elements in the scope of the course
 introduce and use advanced design methods of mechanical parts
 use analytical equations of mechanics to design machine elements and implement standard components to define own technical solutions
 solve technical problems using previously acquired knowledge of subjects: mechanics, strength of materials, machine element design and technical drawings
 design and analyse simple mechanical parts and system
 use Mathcad as a tool for advanced engineering calculations
 create, develop and manage various CAD models (parts, assemblies, drawings and animation) and acquire working knowledge of CAD software
 
- 
                    DescriptionBased on various projects and assignments during the semester, the students will develop their knowledge and methodology for CAD model conception (parametric and in assembly modelling). The projects will focus on the use and implementation of Standard mechanical elements, as well as the creation and definition of parts and assembly drawings of a simple mechanism. The various CAD software functionalities will be reviewed. The project will introduce the project development process.
 Machine Design Elements I:
 Introduction tolerances and fits. Deviations of form and position and surface roughness
 Introduction to material and manufacturing
 Stress and strain /deformation
 Shafting and associated parts
 Rolling-element bearings
 Failure prediction for static loading
 Fasteners, connection, and power screws
 Fasteners, connection, and power screws – weld connections
 Fasteners, connection, and power screws – snap-fit connections
 Fasteners, connection, and power screws – glue connections
 
- 
                    Assessment60 % for Machine Design Fundamentals (100 % Exam)
 40 % for Machine Design Construction (100% Project assessment)
 
- 
                    NoteScripts on Moodle “Fundamentals of Machine Elements, Third Edition: SI Version”, Steven R. Schmid, Bernard J. Hamrock, Bo. O. Jacobson.
 During the course, students will get computer-based presentations and exercises in Mathcad Prime.Autodesk Inventor will be used for practical design exercises.
 “Fundamentals of Machine Components Design”, R. C. Juvinall, Kurt M. Marshek.
 „Roloff/Matek Maschinenelemente“, Herbert Wittel, Dieter Muhs, Dieter Jannasch, Joachim.Voßiek.
 “Engineering Drawing and Design”, 5th Edition, David A. Madsen, David P. Madsen
 Autodesk inventor Documentation and Online help
 MemoTech – Dessin Technique et norm CAO – C.Hazard
 Precis de construction mecanique – R.Quatremer – Nathan
 Guide du Dessinateur industriel – A.Chevalier – Hachette
 Technisches Zeichnen – Hoischen – Edition Cornelsen / Girardet
 
- 
                    Details- Course title: Machine Design Construction I
- Number of ECTS: 2
- Course code: BENG-57
- Module(s): Machine Design I
- Language: EN
- Mandatory: Yes
 
- 
                    ObjectivesThe objectives of the course are: 
 To gain knowledge of the design of machine elements in the scope of the course
 to introduce and use advanced design methods of mechanical parts and systems, using CAD CAE
 to build base student knowledge of machine design, which is needed for their projects applied in mechanical construction projects
 
- 
                    Course learning outcomesThe student in the defined scope of the course is able to:
 carry out a design process of mechanical parts and systems and generate respective engineering drawings in a CAD software
 design machine elements in the scope of the course
 introduce and use advanced design methods of mechanical parts
 use analytical equations of mechanics to design machine elements and implement standard components to define own technical solutions
 solve technical problems using previously acquired knowledge of subjects: mechanics, strength of materials, machine element design and technical drawings
 design and analyse simple mechanical parts and system
 use Mathcad as a tool for advanced engineering calculations
 create, develop and manage various CAD models (parts, assemblies, drawings and animation) and acquire working knowledge of CAD software
 
- 
                    DescriptionBased on various projects and assignments during the semester, the students will develop their knowledge and methodology for CAD model conception (parametric and in assembly modelling). The projects will focus on the use and implementation of Standard mechanical elements, as well as the creation and definition of parts and assembly drawings of a simple mechanism. The various CAD software functionalities will be reviewed. The project will introduce the project development process.
 Machine Design Construction I :
 Deepen CAD knowledge (In assembly modelling) and software functionalities
 Generation of simple mechanism (Conception of parts and assembly – Simulation)
 Definition drawings of parts and assembly (Functional dimensioning of simple mechanism)
 Introduction to usual mechanical links – review of technical solution and analysis of kinematics sketch
 Design and development of machine design using standard elements
 Presentation of Parts and systems using engineering drawing, explosion and animation
- 
                    Assessment60 % for Machine Design Fundamentals (100 % Exam)
 40 % for Machine Design Construction (100% Project assessment)
 
- 
                    NoteScripts on Moodle During the course, students will get computer-based presentations and exercises in Mathcad Prime.Autodesk Inventor will be used for practical design exercises. “Fundamentals of Machine Elements, Third Edition: SI Version”, Steven R. Schmid, Bernard J. Hamrock, Bo. O. Jacobson.
 “Fundamentals of Machine Components Design”, R. C. Juvinall, Kurt M. Marshek.
 „Roloff/Matek Maschinenelemente“, Herbert Wittel, Dieter Muhs, Dieter Jannasch, Joachim.Voßiek.
 “Engineering Drawing and Design”, 5th Edition, David A. Madsen, David P. Madsen
 Autodesk inventor Documentation and Online help
 MemoTech – Dessin Technique et norm CAO – C.Hazard
 Precis de construction mecanique – R.Quatremer – Nathan
 Guide du Dessinateur industriel – A.Chevalier – Hachette
 Technisches Zeichnen – Hoischen – Edition Cornelsen / Girardet
 
- 
                    Details- Course title: Regelungstechnik I
- Number of ECTS: 5
- Course code: BENG-45
- Module(s): Regelungstechnik I
- Language: DE, EN
- Mandatory: Yes
 
- 
                    ObjectivesEinführung in die Regelungstechnik 
- 
                    Course learning outcomesExperimentelle mathematische Identifikation dynamischer Systeme und grundlegende Strategien zur Reglerauslegung
- 
                    DescriptionProblemstellung der Regelungstechnik
 Wichtige Eigenschaften von Regelsystemen
 Beschreibung linearer kontinuierlicher Systeme im Zeitbereich
 Beschreibung linearer kontinuierlicher Systeme im Frequenzbereich
 Verhalten kontinuierlicher Regelsysteme
 Stabilität kontinuierlicher Regelsysteme
 Verhalten kontinuierlicher Regelsysteme
 
- 
                    AssessmentSchriftl. Examen, 120 min
- 
                    NoteH. Unbehauen, Regelungstechnik I, 15. Auflage, Vieweg Teubner Verlag, ISBN 978-3-8348-0497-6
 eigenes Skriptum für den Laborteil
 
Course offer for Filière Maschinenbau, Semestre 5 (2025-2026 Winter)
- 
                    Details- Course title: Machine Design Elements II
- Number of ECTS: 4
- Course code: BENG-66
- Module(s): Machine Design II
- Language: EN
- Mandatory: Yes
 
- 
                    ObjectivesThe objectives of the course are: 
 To gain knowledge of the design of machine elements in the scope of the course
 to introduce and use advanced design methods of mechanical parts, CAD CAE
 to build base student knowledge of machine design, which is needed for their projects applied in mechanical construction
 
- 
                    Course learning outcomesThe student in the defined scope of the course is able to:
 Carry out a design process of mechanical objects and has sufficient knowledge to model and generate engineering drawings of the machine in a CAD software
 Use practically analytical equations of mechanics to design machine elements.
 solves technical problems using previously acquired knowledge of subjects: mechanics, strength of materials, machine element design I and CAD.
 Design and to analyse simple mechanical parts, for instance, a gear train.
 Use Mathcad software as a tool for advanced engineering calculations.
 to gain knowledge of the design of machine elements in the scope of the course
 use analytical equations of mechanics to design machine elements and implement standard components to define own technical solutions
 to create, develop and manage various CAD models (parts, assemblies and drawings) and acquire working knowledge of CAD software
 
- 
                    DescriptionMachine Design Elements II:
 Press-fit connection/stress and deformation in cylinders and tanks
 Lubrication, friction, and wear
 Hydrodynamic and hydrostatic bearings/ bearing
 Fatigue and impact
 General gear theory and spur gears
 Helical gear
 Bevel and worm gears
 Planetary gear train
 Teeth correction
 Design of manual gearboxes
 Machine Design Construction II:
 Deepen CAD knowledge (In assembly modelling) and software functionalities
 Generation of simple mechanism (Conception of parts and assembly – Simulation)
 Definition drawings of parts and assembly (Functional dimensioning of simple mechanism)
 Introduction to usual mechanical links – review of technical solution and analysis of kinematics sketch
 Design and development of machine design using standard elements.
 
- 
                    Assessment50 % Exam – min 07/20
 50 % Project – min 07/20
 
- 
                    NoteScripts on Moodle “Fundamentals of Machine Elements, Third Edition: SI Version”, Steven R. Schmid, Bernard J. Hamrock, Bo. O. Jacobson.
 During the lecture, a computer presentation and practical exercises using Mathcad Prime engineering software will be employed.
 Additionally, Autodesk Inventor/ Fusion 360 (3D CAD) will be used for practical design exercises
 “Fundamentals of Machine Components Design”, R. C. Juvinall, Kurt M. Marshek.
 „Roloff/Matek Maschinenelemente“, Herbert Wittel, Dieter Muhs, Dieter Jannasch, Joachim.Voßiek.
 “Engineering Drawing and Design”, 5th Edition, David A. Madsen, David P. Madsen
 Autodesk inventor Documentation and Online help
 MemoTech – Dessin Technique et norm CAO – C.Hazard
 Precis de construction mecanique – R.Quatremer – Nathan
 Guide du Dessinateur industriel – A.Chevalier – Hachette
 Technisches Zeichnen – Hoischen – Edition Cornelsen / Girardet
 
- 
                    Details- Course title: Machine Design Construction II
- Number of ECTS: 5
- Course code: BENG-65
- Module(s): Machine Design II
- Language: EN
- Mandatory: Yes
 
- 
                    ObjectivesThe objectives of the course are: 
 To gain knowledge of the design of machine elements in the scope of the course
 to introduce and use advanced design methods of mechanical parts, CAD CAE
 to build base student knowledge of machine design, which is needed for their projects applied in mechanical construction
 
- 
                    Course learning outcomesThe student in the defined scope of the course is able to:
 Carry out a design process of mechanical objects and has sufficient knowledge to model and generate engineering drawings of the machine in a CAD software
 Use practically analytical equations of mechanics to design machine elements.
 solves technical problems using previously acquired knowledge of subjects: mechanics, strength of materials, machine element design I and CAD.
 Design and to analyse simple mechanical parts, for instance, a gear train.
 Use Mathcad software as a tool for advanced engineering calculations.
 to gain knowledge of the design of machine elements in the scope of the course
 use analytical equations of mechanics to design machine elements and implement standard components to define own technical solutions
 to create, develop and manage various CAD models (parts, assemblies and drawings) and acquire working knowledge of CAD software
 
- 
                    DescriptionMachine Design Elements II:
 Press-fit connection/stress and deformation in cylinders and tanks
 Lubrication, friction, and wear
 Hydrodynamic and hydrostatic bearings/ bearing
 Fatigue and impact
 General gear theory and spur gears
 Helical gear
 Bevel and worm gears
 Planetary gear train
 Teeth correction
 Design of manual gearboxes
 Machine Design Construction II:
 Deepen CAD knowledge (In assembly modelling) and software functionalities
 Generation of simple mechanism (Conception of parts and assembly – Simulation)
 Definition drawings of parts and assembly (Functional dimensioning of simple mechanism)
 Introduction to usual mechanical links – review of technical solution and analysis of kinematics sketch
 Design and development of machine design using standard elements.
 
- 
                    Assessment50 % Exam – min 07/20
 50 % Project – min 07/20
 
- 
                    NoteScripts on Moodle “Fundamentals of Machine Elements, Third Edition: SI Version”, Steven R. Schmid, Bernard J. Hamrock, Bo. O. Jacobson.
 During the lecture, a computer presentation and practical exercises using Mathcad Prime engineering software will be employed.
 Additionally, Autodesk Inventor/ Fusion 360 (3D CAD) will be used for practical design exercises
 “Fundamentals of Machine Components Design”, R. C. Juvinall, Kurt M. Marshek.
 „Roloff/Matek Maschinenelemente“, Herbert Wittel, Dieter Muhs, Dieter Jannasch, Joachim.Voßiek.
 “Engineering Drawing and Design”, 5th Edition, David A. Madsen, David P. Madsen
 Autodesk inventor Documentation and Online help
 MemoTech – Dessin Technique et norm CAO – C.Hazard
 Precis de construction mecanique – R.Quatremer – Nathan
 Guide du Dessinateur industriel – A.Chevalier – Hachette
 Technisches Zeichnen – Hoischen – Edition Cornelsen / Girardet
 
- 
                    Details- Course title: Thermodynamik II
- Number of ECTS: 5
- Course code: BENG-33
- Module(s): Thermodynamik II
- Language: DE
- Mandatory: Yes
 
- 
                    ObjectivesAufbauend auf der Vorlesung Thermodynamik I werden die Kenntnisse in der Thermodynamik II Vorlesung vertieft. Dabei werden zunächst die Thermodynamischen Potentiale und Maxwellrelationen eingeführt, die für verschiedene Gegebenheiten die Berechnung von Systemeigenschaften und Prozesse vereinfachen. In einem weiteren Kapitel werden Gemische sowie Phasenübergänge und Mehrphasensysteme betrachtet. Das dritte Kapitel behandelt die Statistischen Grundlagen der Thermodynamik. 
- 
                    Course learning outcomesDie Studenten werden im Rahmen der Vorlesung folgende Dinge lernen:
 Thermodynamische Systeme und Prozesse mit Hilfe von Thermodynamischen Potentialen zu beschreiben
 Gemische und Phasenübergänge von Stoffen zu behandeln
 Die Statischen Grundlagen der Thermodynamik
 
- 
                    DescriptionDie Vorlesung ist in flogende Kapitel untergliedert:
 Thermodynamische Potentiale
 Gemische und Phasenübergänge
 Statistische Grundlagen der Thermodynamik
 
- 
                    AssessmentKlausur: 120 Minuten – Open Book
 
- 
                    NotePräsentationsfolien, Tafelanschrieb, Übungsaufgaben Thermodynamik, Langeheinecke, Springer Verlag
 Technische Thermodynamik, Cerbe, Hoffmann, Hanser Verlag
 Grundlagen der Technischen Thermodynamik, Döhring, Springer
 Thermodynamik, Baehr, Springer Verlag
 Thermodynamik: Stephan Mayinger
 Herbert B. Callen: Thermodynamics
 P. W. Atkins: Physikalische Chemie
 C. Kittel: Physik der Wärme
 C. S. Helrich: Modern Thermodynamics with Statistical Mechanics
 W. Nolting: 4. Spezielle Relativitätstheorie und Thermodynamik
 Thermodynamik, Mayinger, Springer Verlag
 
- 
                    Details- Course title: Finite Elemente Methode (statische und dynamische Anwendungen)
- Number of ECTS: 5
- Course code: BENG-68
- Module(s): Finite Elemente Methode (statische und dynamische Anwendungen)
- Language: DE, EN
- Mandatory: Yes
 
- 
                    ObjectivesEinführung in die Finite Elemente Methode mit mechanischen Anwendungen 
- 
                    Course learning outcomesVerständnis der Methode in Statik und Dynamik
 Durchführung von Berechnungsbeispielen per Hand und mit dem Programm ANSYS
 
- 
                    DescriptionEinleitung
 Allg. Herleitung der Bewegungsgleichungen
 Stabelement in der Statik
 Biegebalken in der Statik (2 dim. & 3 dim.)
 Längsschwingungen eines Stabes
 Mehrmassenschwinger
 Homogene Lösung/Modalanalyse
 Partikulare Lösung und harmonische Anregung
 Massenmatrix durch mathematische Diskretisierung
 2 dimensionales Scheibenelement
 ANSYS-Übungen: Square plate (static), 2-D-truss (static), Getriebewelle (static & modal), Corner-Bracket (static), Airplane Wing (modal), 2-Mass-Spring-System (harmonic & transient analysis
 
- 
                    AssessmentSchriftl. Examen, 120 min
- 
                    NoteEigenes Skriptum: Teil 1, Teil 2, ANSYS-Übungen 
- 
                    Details- Course title: Oelhydraulik
- Number of ECTS: 4
- Course code: BENG-69
- Module(s): Oelhydraulik
- Language: DE
- Mandatory: Yes
 
- 
                    Objectives– Auslegung der wesentlichen Komponenten einer Hydraulikanlage 
 – Auslegung von hydraulischen SystemenDer Gesamtvorlesungsumfang beträgt 70 Stunden. Die Vorlesungen teilen sich hälftig auf Armin Schmidt und Timo Zenner mit je 35 Stunden auf. 
- 
                    Course learning outcomesDie Studenten haben Grundkenntnisse über die physikalischen Grundlagen der Hydrostatik und vom Druckmedium. Sie können folgendes tun:
 – Physikalische Grundlagen, Berechnung von Prinziplösungen, z.B. Leistung, Kräfte, Moment, Wirkungsgrad, Volumenstrom, Druckverlust
 – Kenntnis und Berechnung der wesentlichen Komponenten einer Hydraulikanlage
 – Kenntnis, Berechnung und Bewertung von hydraulischen Systemen
 
- 
                    DescriptionEinführung in die Ölhydraulik: Physikalische Grundlagen, hydraulische Begriffe und Symbole, Drückflüssigkeiten. 
 Komponenten: Tank, Pumpe, Schlauch- und Rohrleitungen, Ventile, Motoren, Zylinder, Filter, Kühler, Sensorik, Zubehör
 Grundlegende Hydrauliksysteme
 Exkursion zu Hersteller von Hydraulikkomponenten und –systemen
- 
                    AssessmentSchriftliches Examen
- 
                    NoteBuch “Hydraulik – Grundlagen und Komponenten”, Training-Center@hydac.com, wird den Vorlesungsteilnehmern zur Verfügung gestellt. 
 Vorlesungsfolien und Übungen auf Moodle.
 Optional Umdruck: RWTH Aachen
 Grundlagen der Fluidtechnik, Band 1: Hydraulik, ISBN: 978-3-8440-1223-1
 Optional Buch: Ölhydraulik – Grundlagen, Bauelemente, Anwendungen
 Gerhard Bauer, Teubner Verlag ISBN 978-3-8351-0247-7
- 
                    Details- Course title: Electrical Energy Production Transportation and Distribution
- Number of ECTS: 3
- Course code: MSPC-26
- Module(s): Electrical Energy Production, Transportation & Distribution
- Language: EN
- Mandatory: Yes
 
- 
                    Objectives1. Knowing the different sources of energy contributing to the production of the electrical energy 
 2. Knowing the different solutions to network the power units together and with the consumer
 3. Knowing the electrical and the mechanical conversion possibilities for the distribution of the electrical energy
 4. Understanding the electrical power flow management between the power units together as well as with the consumer
 5. Knowing the electrical power quality norms
 6. Knowing the power losses generation and its relative cost in the energy systems for a sustainable
 and rational use of the electrical energy
- 
                    Course learning outcomesThe student will acquire a global knowledge about the production, transportation, distribution and conversion of the electrical energy, as well as its transformation into/from the mechanical energy.
 The sustainable rational use of the electrical energy as well as the electrical energy management, are also covered.
- 
                    Description1. Production of the electrical energy The energy sources (fossil fuels, nuclear, renewable)
 The generation of the electrical energy2. Transportation of the electrical energy Electrical power transmission
 Power quality norms
 Low to high DC and AC voltage grids
 Coupling of voltage supplies3. Conversion and distribution of the electrical energy Modern distribution systems
 Transformation of the electrical energy4. Sustainable and rational use of the electrical energy Power losses
 Costs of the energy systems
- 
                    Assessment
 Written exam (100%)
 Objectives:1.To be able to define the fundamental electrical devices used for the production, transformation, transport and distribution of electrical energy 
 2.To be able to explain the operation of the electrical devices
 3.To be able to calculate relevant values of electrical circuits made of passive components
 Assessment rules:Based on application exercises (theory, formal calculation simulation) and their correction during the lecture, the student must be able to answer questions and solve similar problems on his/her own. 
 Assessment criteria:Quality of the answers consisting in a correct communication language (English), the detailed methodology and the calculation results. 
- 
                    NoteAvailable at the University library or on internet:
 [1] http://en.wikipedia.org/wiki/Electric_power
 [2] James Northcote-Green, Robert Wilson, “Control and Automation of Electrical Power Distribution
 Systems”, Taylor Francis 2007, ISBN 0-8247-2631-6
 [3] Peter Zacharias, “Use of Electronic-Based Power Conversion for Distributed and Renewable
 Energy Sources”, ISET 2008
 [4] Adolf J. Schwab, “Elektroenergiesysteme – Erzeugung, Transport, Übertragung und Verteilung
 elektrischer Energie“, Springer 2008, ISBN 3-540-29664-6
 [5] H.J. Haubrich, G. Henneberger, H.C. Skudelny, Müller-Hellmann, “Elektrische Energie aus
 regenerativen Quellen“, Vorlesung der RWTH Aachen 1994
 [6] Andreas Wagner, “Photovoltaik Engineering – Handbuch für Planung, Entwicklung und
 Anwendung“, Springer 2006, ISBN 3-540-30732-X
 [7] Mark Hankins, “Stand-alone Solar Electric Systems“, Earthscan 2010, ISBN 978-1-84407-713-7
 [8] Michael Fette, Rolf Schwarze, Jürgen Voß, “Energieversorgung der Zukunft“, VDE Verlag 1996,
 ISBN 3-8007-2174-0
- 
                    Details- Course title: Business Management für Studierende im Ingenieurwesen
- Number of ECTS: 4
- Course code: BENG-71
- Module(s): Business Management für Studierende im Ingenieurwesen
- Language: DE
- Mandatory: Yes
 
- 
                    ObjectivesZiel der Vorlesung ist es ,den angehenden Ingenieuren ein Instrumentarium an die Hand zu geben, das es ihnen ermöglicht wirtschaftswissenschaftliche Sachverhalte zu verstehen, diese auszuwerten und zu interpretieren. 
 Vermittlung von essentiellen Grundlagen zum Verständnis des ökonomischen Umfelds. Erarbeitung von wichtigen Methoden und gezieltem Fachwissen zur Anwendung im späteren Berufsleben.
 
- 
                    Course learning outcomesDie Studierenden sind in der Lage relevante wirtschaftswissenschaftliche Sachverhalte zu verstehen und die erworbenen Kenntnisse und Kompetenzen gegebenenfalls im Berufsleben anzuwenden.
 
- 
                    Description– Begriffsbestimmungen und ökonomische Grundsätze
 – Standortwahl
 – Rechtliche Aspekte
 – Produktionswirtschaft
 – Internes Rechnungswesen
 – Externes Rechnungswesen
 – Finanzierung
 – Angewandte Mathematik der BWL
 – Investitionen und Anlagen
 – Entscheidungstheorie
 – Marketing
 – Business Plan
 
- 
                    AssessmentAbschlussklausur 100%
 
- 
                    NoteGrap,R. (Hrsg.): Business Management für Ingenieure, 1.Auflage 2007, Hanser Verlag, München.
 Kilger, W.: Einführung in die Kostenrechnung. 3. Auflage 1987, Gabler Verlag, Wiesbaden
 Wöhe, G., Döring, U., Brösel, G.: Einführung in die allgemeine Betriebswirtschaftslehre, 26. Auflage 2016, Verlag Vahlen, München
 
- 
                    Details- Course title: Energy Systems I
- Number of ECTS: 5
- Course code: BENG-70
- Module(s): Option Energy Systems I
- Language: EN
- Mandatory: No
 
- 
                    Course learning outcomesAt the end of this course, students will be able to critically analyse a range of different energy systems. They will identify key sources and sinks, be able to explain the transformations occurring, and use a range of techniques to investigate the different systems with a goal of calculating full mass and energy balances and calculating efficiencies.
- 
                    DescriptionOverview of energy systems
 Basics of mass balance and energy balance for energy systems
 Combustion systems
 Electrochemical systems
 Renewable energy systems
 
- 
                    AssessmentFinal exam, 90 mins.
- 
                    NoteSupport materials and literature will be provided by the lecturer. 
Course offer for Filière Maschinenbau, Semestre 6 (2024-2025 Summer)
- 
                    Details- Course title: Machine Design Elements III
- Number of ECTS: 3
- Course code: BENG-95
- Module(s): Machine Design III
- Language: EN
- Mandatory: Yes
 
- 
                    ObjectivesThe objectives of the course are: 
 To gain knowledge in the design of machine elements in the scope of the course
 to introduce and use advanced design methods of mechanical parts, CAD CAE
 to build basic knowledge of machine design, which is needed for their projects applied in mechanical construction
 
- 
                    Course learning outcomesThe student in the defined scope of the course is able to:
 Carry out a design process of a mechanical, technical object and has sufficient knowledge to model and generate engineering drawings of the machine in a CAD software
 Use practically analytical equations of mechanics to design machine elements and implement standard components to define own technical solutions
 Use Mathcad as a tool for advanced engineering calculations
 Create, develop and manage various CAD models (parts, assemblies and drawings) and acquire working knowledge of CAD software
 Design and to analyse complex mechanical parts
 Propose an appropriate technological process of manufacture and assembly for a particular machine element
 Understand the concept of the machine element validation and optimisation
 
- 
                    DescriptionMachine Design Elements III:
 o Columns and buckling phenomena in machine design
 o Springs
 o Sealing
 o Valves
 o Flexible machine elements
 o Brakes and clutches
 o Cast enclosure designs
 o Manual gearbox designs
 o Machine element optimisation
 Machine Design Construction III:
 o Deepen CAD knowledge (In assembly modelling) and software functionalities
 o Generation of simple mechanism (Conception of parts and assembly – Simulation)
 o Definition drawings of parts and assembly (Functional dimensioning of simple mechanism)
 o Introduction to usual mechanical links – review of technical solution and analysis of kinematics sketch
 o Design and development of machine design using standard elements.
 
- 
                    Assessment50 % Exam – Grade 05/20
 50 % Project – Grade 05/20
 
- 
                    NoteScripts on Moodle “Fundamentals of Machine Elements, Third Edition: SI Version”, Steven R. Schmid, Bernard J. Hamrock, Bo. O. Jacobson.
 During the lecture, a computer presentation and practical exercises using Mathcad Prime engineering software will be employed.
 Additionally, Autodesk Inventor/ Fusion 360 (3D CAD) will be used for practical design exercises
 “Fundamentals of Machine Components Design”, R. C. Juvinall, Kurt M. Marshek.
 „Roloff/Matek Maschinenelemente“, Herbert Wittel, Dieter Muhs, Dieter Jannasch, Joachim.Voßiek.
 “Engineering Drawing and Design”, 5th Edition, David A. Madsen, David P. Madsen
 Autodesk inventor Documentation and Online help
 MemoTech – Dessin Technique et norm CAO – C.Hazard
 Precis de construction mecanique – R.Quatremer – Nathan
 Guide du Dessinateur industriel – A.Chevalier – Hachette
 Technisches Zeichnen – Hoischen – Edition Cornelsen / Girardet
 
- 
                    Details- Course title: Machine Design Construction III
- Number of ECTS: 4
- Course code: BENG-96
- Module(s): Machine Design III
- Language: EN, FR
- Mandatory: Yes
 
- 
                    ObjectivesThe objectives of the course are: 
 To gain knowledge in the design of machine elements in the scope of the course
 to introduce and use advanced design methods of mechanical parts, CAD CAE
 to build basic knowledge of machine design, which is needed for their projects applied in mechanical construction
 
- 
                    Course learning outcomesThe student in the defined scope of the course is able to:
 Carry out a design process of a mechanical, technical object and has sufficient knowledge to model and generate engineering drawings of the machine in a CAD software
 Use practically analytical equations of mechanics to design machine elements and implement standard components to define own technical solutions
 Use Mathcad as a tool for advanced engineering calculations
 Create, develop and manage various CAD models (parts, assemblies and drawings) and acquire working knowledge of CAD software
 Design and to analyse complex mechanical parts
 Propose an appropriate technological process of manufacture and assembly for a particular machine element
 Understand the concept of the machine element validation and optimisation
 
- 
                    DescriptionMachine Design Elements III:
 o Columns and buckling phenomena in machine design
 o Springs
 o Sealing
 o Valves
 o Flexible machine elements
 o Brakes and clutches
 o Cast enclosure designs
 o Manual gearbox designs
 o Machine element optimisation
 Machine Design Construction III:
 o Deepen CAD knowledge (In assembly modelling) and software functionalities
 o Generation of simple mechanism (Conception of parts and assembly – Simulation)
 o Definition drawings of parts and assembly (Functional dimensioning of simple mechanism)
 o Introduction to usual mechanical links – review of technical solution and analysis of kinematics sketch
 o Design and development of machine design using standard elements.
 
- 
                    Assessment50 % Exam – Grade 05/20
 50 % Project – Grade 05/20
 
- 
                    NoteScripts on Moodle “Fundamentals of Machine Elements, Third Edition: SI Version”, Steven R. Schmid, Bernard J. Hamrock, Bo. O. Jacobson.
 During the lecture, a computer presentation and practical exercises using Mathcad Prime engineering software will be employed.
 Additionally, Autodesk Inventor/ Fusion 360 (3D CAD) will be used for practical design exercises
 “Fundamentals of Machine Components Design”, R. C. Juvinall, Kurt M. Marshek.
 „Roloff/Matek Maschinenelemente“, Herbert Wittel, Dieter Muhs, Dieter Jannasch, Joachim.Voßiek.
 “Engineering Drawing and Design”, 5th Edition, David A. Madsen, David P. Madsen
 Autodesk inventor Documentation and Online help
 MemoTech – Dessin Technique et norm CAO – C.Hazard
 Precis de construction mecanique – R.Quatremer – Nathan
 Guide du Dessinateur industriel – A.Chevalier – Hachette
 Technisches Zeichnen – Hoischen – Edition Cornelsen / Girardet
 
- 
                    Details- Course title: Fertigungstechnik II
- Number of ECTS: 5
- Course code: BENG-97
- Module(s): Fertigungstechnik II
- Language: DE
- Mandatory: Yes
 
- 
                    ObjectivesKenntnisse über Grundlagen, Aufbau, Bauformen von Werkzeugmaschinen sowie der Anforderungen an Werkzeugmaschinen sowie die Umsetzung der fertigungstechnischen Prozesse durch Werkzeugmaschinen in der industriellen Produktion 
- 
                    DescriptionÜberblick über die wichtigsten Arten von Werkzeugmaschinen und die Einordnung in die dazugehörigen fertigungstechnischen Prozesse, systematische Gliederung der Werkzeugmaschinen, Hauptkomponenten, Werkzeugmaschinengestell, Fundamente, Lagerungen und Führungen, Spindel, Antriebe, Getriebe, Steuerung, Ausrüstung von Werkzeugmaschinen, Spanende Werkzeugmaschinen mit definierter Schneide, Spanende Werkzeugmaschinen mit undefinierter Schneide, Umformmaschinen, Wasserstrahlschneidmaschinen, Erodiermaschinen, Grundlagen Automatisierung mit Industrierobotern
- 
                    AssessmentKlausur 120 Min.
- 
                    NoteVorlesungsfolien
 Vorlesungen, evt. Übungsaufgaben und Laborübungen
- 
                    Details- Course title: Robotik
- Number of ECTS: 3
- Course code: BENG-98
- Module(s): Robotik
- Language: DE, EN
- Mandatory: Yes
 
- 
                    ObjectivesRoboter werden seit Jahren erfolgreich in der Industrie zur Automatisierung eingesetzt. Doch Roboter werden zukünftig mehr und mehr als Assistenzroboter im privaten und öffentlichen Leben auftauchen. Staubsaugroboter, Rasenmähroboter oder Wischroboter sind bereits in vielen Haushalten dankend aufgenommen worden. Der Entwicklungsweg zum persönlichen Roboterassistenten, der auch in der Küche helfen kann ist nicht mehr lang. In Krankenhäusern helfen immer öfter Tele-Manipulatoren als Assistenzsysteme mit intelligenten Funktionen bei Operationen. Roboter übernehmen bereits das Einparken in Parkhäusern. Die intelligente Gehilfe für körperlich eingeschränkte Menschen ist bereits in einigen Rehabilitationszentren zum Training eingeführt worden. Die Kommunikation älterer Menschen in Betreuungs- und Pflegeheimen wird durch eine künstliche (Roboter)-Robbe, die sich anschmiegen kann, angeregt. Aber besonders hilfreich werden Assistenzroboter, die kooperativ mit dem Menschen zusammenarbeiten, in der Produktion sein. Zukünftig entstehen neue Arbeitsformen, die Arbeitsplätze mit bisher weitgehend manueller Arbeit produktiver machen. 
 Die Lehrveranstaltung stellt das spannende Thema Robotik theoretisch und praktisch vor. Die Theorie wird mit Hilfe von MATLAB Übungen und Simulationsübungen erklärt. Die Programmierung der Industrie-Roboter wird im Technikum an vier verschiedenen Geräten geübt. Dabei kann man Roboter programmieren lernen, die bis zu 350 kg bewegen können!
 
- 
                    DescriptionAufbau von Roboterplattformen und Roboterarmen,
 Kenngrößen der Roboter,
 mathematische Verfahren zur Beschreibung der Kinematik von Roboterarmen und mobilen Plattformen,
 Programmierverfahren und Steuerung von mobilen Robotern und Roboterarmen,
 Computer-Vision Systeme zur automatischen Bewegungssteuerung und Navigation.
 
- 
                    AssessmentKlausur und Praktikumsbericht
- 
                    Details- Course title: Digital Rapid Prototyping
- Number of ECTS: 5
- Course code: BENG-100
- Module(s): Option Digital Rapid Prototyping
- Language: EN, FR
- Mandatory: No
 
- 
                    ObjectivesThe objective of the course is to obtain a working knowledge of all various digital fabrication technologies used to create a system from an optimized CAD model. The geometry and assembly of a product / system is optimized in CAD software and then a high-fidelity prototype will be generated. The course will review all current technologies with direct respective applications. 
- 
                    Course learning outcomesThe students in the defined scope of the course are able to:
 Understand the principles, capabilities and limitations of Rapid prototyping technologies and processes
 Determine and use appropriate RP technologies depending on applications
 Develop and optimize virtual products for generation of high-fidelity prototypes
 Use and apply on concrete applications most common technology
 Optimize the geometry of product and systems using numerical simulation tools
 
- 
                    DescriptionBasic Principles and capabilities of Additive Manufacturing
 Development and process chain of AM
 Review of technology
 Photopolymerisation
 Powder Bed fusion
 Extrusion based
 Material and Binder jetting
 Sheet lamination
 Direct Energy deposition
 Direct write technologies
 Guidelines for process selection
 Post-processing
 Slicer Softwares
 Design for AM
 Application for AM
 Geometry optimisation using Numerical simulation
 Lab direct application
 
- 
                    AssessmentExam 30%
 Project 70%
 
- 
                    NoteScripts on Moodle
 Autodesk Inventor/ Fusion 360 (3D CAD) will be used for practical design exercises
 Introduction to various slicer software for AM
 Ansys Workbench
 
- 
                    Details- Course title: Workshop Project Management
- Number of ECTS: 2
- Course code: BENG-103
- Module(s): Option Workshop Project Management
- Language: DE, EN
- Mandatory: No
 
- 
                    ObjectivesThe students can organize and schedule projects efficiently. They plan the resources, stay within budget and complete the projects on time. Students can assess risks and maintain communication within the team and outside. 
- 
                    Course learning outcomesThe students will be able to structure a project execution including the project team setup. Students will learn to develop a project time schedule (Gantt-chart) to allocate resources, to include milestones and compare planning to real project progress. They can identify dependencies of different tasks, highlight bottlenecks and detect the critical path. They know project planning methods and can use common planning tools like Excel, MS Project or SAP.
- 
                    Description– Defining the scope of the project
 – What has to be done until when?
 – The project schedule: Developing a bar chart diagram (Gantt-chart).
 Knowing of principles of network planning diagrams
 – Getting the right team at the right time. Allocation of resources
 – Cost estimation
 – Recognizing risk factors and preparing to mitigate risks
 – Defining roles and responsabilities
 – Tracking progress and monitoring performance. The gate review process
 – Keeping everyone informed by efficient communication
 – Effective time management
 – Definition of roles for: the project manager, commercial managers and time scheduler and other core team members
 – Organizational structures for project execution
 – Management of conflicts. Conflict resolution methods
 – Personality types (MBTI)
 – Using technology (IT) to plan and track projects
 – Case studies will enable the students to apply the learned competencies
 
- 
                    NotePMI Project Management Body of Knowledge (Ed. 6/7), ISO 21500:2016
- 
                    Details- Course title: Propriété Intellectuelle et Veille Technologique
- Number of ECTS: 2
- Course code: BENG-105
- Module(s): Option Propriété Intellectuelle et Veille Technologique
- Language: FR
- Mandatory: No
 
- 
                    Objectives-Comprendre l’importance de la protection du patrimoine immatériel et les bases de la propriété intellectuelle (brevets, marques, dessins modèles, droits d’auteur). 
 -Comprendre l’importance de l’exploitation systématique des informations techniques contenues dans les brevets d’invention.
 -Savoir utiliser les bases de données brevets et adapter sa stratégie de recherche d’information.
 -Familiariser l’étudiant avec les pratiques de veille et apprendre les techniques de base pour rechercher, analyser et protéger les informations nécessaires pour mener un projet d’innovation.
 
- 
                    Description1. Importance de la protection du patrimoine immatériel et de la propriété intellectuelle dans l’économie de la connaissance
 – Les principaux droits de PI
 – Logiciels, Open source et Intelligence Artificielle
 – Confidentialité et contrats
 2. L’information brevets et les bases de données
 – Le système des brevets
 – Les informations contenues dans un brevet
 – Les bases de données accessibles en ligne
 3. Bonnes pratiques de recherche dans les brevets
 – Les méthodes d’interrogation des bases de données
 – Elaborer une stratégie de recherche
 – Exercices pratiques (Recherche brevet sur Espacenet / Patentscope)
 4. Veille technologique
 – La veille et son utilité
 – Infométrie, statistiques et analyses
 – Exercices pratiques (Statistiques brevets sur Espacenet)
 
- 
                    AssessmentExamen final 120 min
- 
                    NoteDocumentation et didacticiel des bases de données brevets (ressources en ligne)
 Webographie veille technologique et intelligence économique (ressources en ligne)
 
- 
                    Details- Course title: Bachelor Thesis
- Number of ECTS: 12
- Course code: BENG-106
- Module(s): Bachelor Thesis
- Language:
- Mandatory: Yes
 
- 
                    Details- Course title: Propriété Intellectuelle et Veille Technologique
- Number of ECTS: 2
- Course code: BENG-105
- Module(s): Ergänzung Mobilitätssemester
- Language: FR
- Mandatory: No
 
- 
                    Objectives-Comprendre l’importance de la protection du patrimoine immatériel et les bases de la propriété intellectuelle (brevets, marques, dessins modèles, droits d’auteur). 
 -Comprendre l’importance de l’exploitation systématique des informations techniques contenues dans les brevets d’invention.
 -Savoir utiliser les bases de données brevets et adapter sa stratégie de recherche d’information.
 -Familiariser l’étudiant avec les pratiques de veille et apprendre les techniques de base pour rechercher, analyser et protéger les informations nécessaires pour mener un projet d’innovation.
 
- 
                    Description1. Importance de la protection du patrimoine immatériel et de la propriété intellectuelle dans l’économie de la connaissance
 – Les principaux droits de PI
 – Logiciels, Open source et Intelligence Artificielle
 – Confidentialité et contrats
 2. L’information brevets et les bases de données
 – Le système des brevets
 – Les informations contenues dans un brevet
 – Les bases de données accessibles en ligne
 3. Bonnes pratiques de recherche dans les brevets
 – Les méthodes d’interrogation des bases de données
 – Elaborer une stratégie de recherche
 – Exercices pratiques (Recherche brevet sur Espacenet / Patentscope)
 4. Veille technologique
 – La veille et son utilité
 – Infométrie, statistiques et analyses
 – Exercices pratiques (Statistiques brevets sur Espacenet)
 
- 
                    AssessmentExamen final 120 min
- 
                    NoteDocumentation et didacticiel des bases de données brevets (ressources en ligne)
 Webographie veille technologique et intelligence économique (ressources en ligne)
 
- 
                    Details- Course title: Energy Systems II
- Number of ECTS: 5
- Course code: BENG-116
- Module(s): Ergänzung Mobilitätssemester
- Language: EN
- Mandatory: No
 
- 
                    Course learning outcomesAt the end of this course, students will be able to critically analyse a range of different energy systems with a particular focus on the production of hydrogen from renewable energy sources.
 Students will be able to describe a wide range of systems for the production of green hydrogen, and conduct design studies for the integration of renewable energy sources with hydrogen production.
 
- 
                    DescriptionOverview of hydrogen production systems
 Review of different electrolyser technologies
 Production of green hydrogen using renewable energy sources, detailed case studies of a wide range of options
 Sector coupling
 
- 
                    Assessment50% from class project, 50% from final exam
- 
                    NoteSupport materials and literature will be provided by the lecturer.