Event

Algebra, Geometry and Quantization seminar

  • Conférencier  Matteo Felder (University of Zurich)

  • Lieu

    Campus Belval Maison du Nombre E06-0615350

    6, avenue de la Fonte

    4364, Esch-sur-Alzette, LU

  • Thème(s)
    Mathématiques

For a finite dimensional Lie algebra g, the Duflo map S(g) rightarrow U(g) defines an isomorphism of g-modules. On g-invariant elements it gives an isomorphism of algebras. Moreover, it induces an isomorphism of algebras on the level of Lie algebra cohomology H(g,S(g)) rightarrow H(g, U(g)). However, as shown by J. Alm and S. Merkulov, it cannot be extended in a universal way to an A_infty-isomorphism between the corresponding Chevalley-Eilenberg complexes. In this talk, we will try to give an elementary and self-contained proof of this fact using a version of M. Kontsevich’s graph complex.