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Abstract
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1 Introduction

Advanced economies face stagnating growth in per-capita income, with demographic changes,

such as aging populations and declining fertility, playing a critical role. While technological

progress and labor-market dynamics are essential drivers of growth, demographic factors of-

ten remain underexplored in macroeconomic analyses. Yet, these factors directly influence the

size and productivity of the labor force, creating feedback loops between economic growth and

demographic trends.

This paper introduces a novel macroeconomic model that explicitly links demographic dy-

namics with macroeconomic variables. Our framework incorporates households with hetero-

geneous members, where fertility and labor-market participation decisions are endogenously

determined. These decisions are shaped by macroeconomic factors, such as wages and income

streams, while also affecting aggregate productivity and economic outcomes.

We focus on three key questions: (1) To what extent do demographic factors, such as ris-

ing mortality due to aging and declining fertility, affect economic growth? (2) How do policy

changes aimed at increasing labor market participation and fertility impact demographic trends

and macroeconomic variables? (3) How does technological progress interact with macroeconomic

variables, such as GDP and demographic dynamics? To address these questions, we calibrate our

model to Japanese data from 1970 to 2019, capturing the country’s unique demographic and eco-

nomic trajectory. We then conduct counterfactual simulations to assess the impact of policies

aimed at reducing labor-market participation costs, lowering the cost of raising children, and

increasing productivity growth.

Our findings reveal several important insights. First, reducing labor market participation

costs increases the number of workers while lowering GDP per worker, but it has a limited im-

pact on population growth or overall GDP. Second, lowering the cost of raising children effec-

tively mitigates population decline while reducing GDP per capita, but it does not affect GDP per

worker. Last, in the most realistic scenario, higher productivity growth can stimulate population

growth by increasing expected future wages, but also reduces the number of workers through

selection effects, highlighting trade-offs between productivity and labor supply.

In the model, the birth rate results from the balance between the expected lifetime sum of

labor-market income and a fixed sunk cost for the creation and raising of newborns. The dynam-

ics of labor-market income are driven by the interplay between individual productivity distribu-

tions – based on a Pareto distribution – and the repeated payment of labor-market participation

costs. Thus, fertility, labor-market participation, and the total number of workers are influ-

enced by both demographic and macroeconomic factors. Additionally, due to the heterogeneity

in productivity and the endogenous nature of labor-market participation and employment, labor-

market and demographic variables endogenously affect the aggregate efficiency of the economy
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through worker selection effects.

Although our theoretical model is broadly applicable to economies at any stage of demo-

graphic transition and economic development, we use Japan as a case study for our quantitative

analysis. Japan is well known for its rising mortality rate due to an aging population and de-

clining fertility since the post-war period. As a result, despite various policy measures aimed

at mitigating population decline by reducing the costs of raising children, the population has

started to shrink in recent years.1 Further, recent trends indicate stagnation in GDP per capita,

despite increasing labor market participation driven by policies encouraging elderly and female

workers, in particular, to remain employed or to participate respectively.

We calibrate parameter values and estimate exogenous trends – depreciation of human capi-

tal, declining mortality rate, cost of raising newborns, labor-market participation costs, and labor

productivity – to match the observed growth rates of GDP per worker, population, labor-market

participation rate, and birth rate in Japan from 1970 to 2019. Using our structural model, we then

conduct counterfactual analysis for future periods to explore the key driving forces behind these

trends.

The analysis of labor-market participation costs reveals significant effects on participation

rates and GDP per worker, but mostly through the number of workers. Higher participation

costs reduce labor-market participation, while lower costs increase it. However, population de-

clines uniformly across scenarios, as changes in labor-market participation costs do not affect

the balance between the value of human beings, defined as the expected sum of lifetime income

and the cost of raising newborns. Lower costs lower GDP per worker by attracting less efficient

participants, whereas higher costs select more efficient workers and raise GDP per worker. GDP

per capita remains stable across scenarios, reflecting a balance between participation rates and

productivity. The policy aimed at changing labor-market participation thus carries distributional

effects, as it implies more but less efficient work, and shifts the burden of production on workers

while keeping GDP per capita constant.

Reducing sunk costs for newborns is effective in mitigating population decline. However, the

additional population growth primarily consists of non-working individuals, reducing the share

of the working population. While GDP per worker remains unchanged, GDP per capita grows

more slowly due to the increased economic burden of larger non-working population. This

result highlights the trade-off between promoting population growth and maintaining economic

efficiency and equality.

Finally, higher productivity growth increases GDP per worker, but may lead to stronger or

weaker population decline, depending on the interaction between trend productivity growth and

the exogenous driving forces affecting population growth. In the simplified case where infant

1These policies include childcare and education support, parental leave, financial and housing assistance, work-life
balance initiatives, and fertility treatment subsidies.
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mortality and death rates are constant, wealth effects lead to a decline in population. However,

in more complex scenarios where human capital depreciation and death rates evolve over time

following the recent trend, higher productivity growth may help mitigate population decline.

Our general conclusion from a comprehensive model that includes endogenous fertility and

labor market participation is that demographic trends and potential policies aimed at curbing

them have relatively little effect on macroeconomic efficiency. They mostly affect the number of

workers or population, and thus affect GDP per worker or GDP per capita, but through work-

ers or capita. The effects of technology progress on demographic variables are quite stronger:

stimulating innovation and productivity growth can help counter population decline. These find-

ings highlight the intricate interplay between demographic policies, labor-market dynamics, and

technological progress in shaping the trajectory of aging economies.

While we assume perfect risk sharing within the population, our analysis highlights the po-

tential conflicts arising from the distributional consequences of policy changes. Using Japan as

an example, population decline can be mitigated through policies that reduce the costs of raising

children. However, we show that such policies inevitably place a greater burden on workers. To

alleviate potential disputes, policies aimed at increasing labor-market participation would be de-

sirable to foster a more equitable society. These conflicts become particularly pronounced when

technological progress slows down.

Literature. Our paper contributes to the literature in various respects. First, trying to explain

the lost decade in Japan, Hayashi and Prescott (2002) show the critical explanatory power of an

exogenous TFP process but do not link the latter to demographic factors. Our model provides an

intuitive mapping between aging, fertility, and productivity, and builds a bridge between papers

trying to explain the recent productivity slowdown and papers looking at the effects of aging.

Second, most recent overlapping generation (OLG) models such as Choukhmane, Coeur-

dacier, and Jin (2023), Nishiyama (2015), Kitao (2015), McGrattan and Prescott (2018), or Katagiri,

Konishi, and Ueda (2020) look at the consequences of aging on the conduct of (potentially opti-

mal) public policies, and disregard the potentially endogenous effects of aging on productivity.

Some OLG models look at the issue of how aging might affect productivity, such as Fougère

and Mérette (1999) or Bouzahzah, De la Croix, and Docquier (2002), but within relatively com-

plex frameworks based on simulations. In contrast, our approach is highly tractable and can

be understood by looking at a couple of equations. In addition, the above-cited papers develop

endogenous growth models with human capital to account for the endogenous productivity ef-

fects of aging. In our model, productivity is endogenously affected by the number of workers,

which depends on how large the total population is given both aging and endogenous fertility

but also on the time-varying average productivity of workers, that results from selection effects

through labor-market participation decisions. Indeed, Kotschy and Bloom (2023) show that ag-
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ing can affect growth through changes in the working-age population, which is also affected by

labor-market participation, and both margins should be carefully considered, as in our model.

Closer to our paper, Fernández-Villaverde, Ventura, and Yao (2023) recently show the im-

portance of looking at GDP per worker to assess the dynamism of advanced economies instead

of GDP per capita, which could be misleading. Just as Fernández-Villaverde, Ventura, and Yao

(2023), our model reproduces the steady increase in the GDP per worker over time in Japan.

However, our model differs in that demography and labor-market participation are endogenous

and result from an investments in human capital and from the selection of workers into the labor

market.

Our paper also partly overlaps with Cooley and Henriksen (2018), who show how aging

changes the composition of the labor force and thus alters the productivity of labor, which may

account for a substantial fraction – up to a quarter – of the observed slowdown in TFP growth. Re-

latedly, Kydland and Pretnar (2019), shows how an aging population leads to structural changes

in the allocation of time to care of sick older people and leads to lower labor-market participa-

tion, which then reduces productivity and GDP per capita. Although our model works through

very different channels than these two contributions, it also links demographic factors to labor-

market participation and can thus be seen as an interesting complement. Its main interest, we

believe, is the original two-way interaction between demographic and economic factors through

endogenous fertility.

Finally, our paper contributes to the rising literature using macroeconomic models with het-

erogeneous agents.2 Different from these simulation-based approaches, we track the distribution

of worker productivity with summary statistics as in Ghironi and Melitz (2005) or Hamano

and Zanetti (2017) among many others. The critical difference is that the heterogeneous-agent

approach applies to households rather than firms though. Hence, our model provides a very

tractable way of introducing households heterogeneity and its labor-market, demographic and

macroeconomic implications. One key difference with respect to most heterogeneous-agents

models currently used is, however, that we consider full risk-sharing among household mem-

bers. While it greatly simplifies the model solution, it insulates aggregate saving decisions from

the income risks associated with aging and declining fertility.

The paper is structured as follows. Section 2 presents a simple model of endogenous pop-

ulation and labor-market participation with heterogeneous workers that links demographic and

economic factors in a novel and intuitive way. Section 3 discusses the calibration and explains

how trends are estimated. Finally, Section 4 offers counterfactual experiments and Section 5

concludes.

2See Heathcote, Storesletten, and Violante (2009) for a survey including papers resorting to OLG models, and
Kaplan and Violante (2018) for a more recent review, but focusing on heterogeneous-agents New Keynesian (HANK)
models.

5



2 Model

We propose a model with endogenous household size and labor-market participation. House-

holds supply labor monopolistically and receive firms’ profits. Given the labor-market outcomes

in terms of wages and the death rate of individuals, they can choose to increase or decrease the

number of household members.

2.1 Firm and labor demand

Firms are perfectly competitive in goods market. The representative firm has the following

aggregate production function:

Yt = atHt, (1)

where at denotes the Total Factor Productivity (TFP hereafter), and ht is a bundle of the different

varieties of labor ω:

Ht =

[∫
ω∈Ω

z (ω) ht (ω)
θ−1

θ dω

] θ
θ−1

, (2)

where z (ω) is the productivity of variety ω. The firm maximizes its profits, given that total

labor expenditure are
∫

ω∈Ω wt (ω) ht (ω) dω, which gives the following labor demand function

for variety ω:

ht (ω) =

(
wt (ω)

Wtz (ω)

)−θ

Ht, (3)

where

Wt =

[∫
ω∈Ω

z (ω)

(
wt (ω)

z (ω)

)1−θ

dω

] 1
1−θ

. (4)

We choose the price of the final good as numeraire.

2.2 Household sector

There is a unit continuum of households. In every period t, household j is made of two types

of individuals: mt (j) individuals who are already members of the household at the beginning

of the period, and met (j) new individuals who join the household during the period (such as

children). At the end of period t, a fraction deltat ∈ [0, 1] of all existing individuals is subject

to an exogenous mortality shock. Similarly, a fraction taut ∈ [0, 1] of all newborns faces an

exogenous infant mortality shock. We assume that it takes one period for a newborn to become

an ’active’ member of the household. The total number of members in household (j) thus evolves

according to:

mt+1(j) = (1 − δt)mt(j) + (1 − τt)met(j). (5)

Among the mt (j) individuals in the household at the beginning of period t, only the most

productive enter the labor market. Labor-market entry is subject to the repeated payment of

6



a participation cost fnt, also paid in units of labor. This cost can be thought to represent on-

the-job training costs or various job-related types of expenditure like transport, specific cloth-

ing/equipments or commuting.

Consider a continuum of individuals with heterogeneous productivity that supply differen-

tiated types of labor within the household. Household j allows for endogenous entry (fertility)

and endogenous participation in the labor-market. Over the entire space of individuals, only

a subset will actually work and choose to pay the fixed cost. Each individual draws a specific

random labor quality z from a probability density function µ (z) upon entering the household.

When she works, she supplies labor for a given amount of demand given by Equation (3).

The decision for total consumption and the creation of new members belongs to the house-

hold level while labor supply is made at individual level. Household j and each individual

member with productivity z jointly maximize the following discounted sum of life time utility:

max Et

{
∞

∑
s=t

βs−t

(
Cs (j)1−σ

1 − σ
− η

Ls (j) 1+φ

1 + φ

)}
, (6)

where Ct (j) and Lt (j) respectively denote total consumption and hours worked in the household.

Parameters σ and φ respectively stand for the constant degree of relative risk aversion and the

inverse of Frisch elasticity on labor supply. Note also that Lt (j) is defined as:

Lt (j) =
[∫ ∞

zmin

zℓt (j, z)
θ−1

θ dz
] θ

θ−1

.

Maximization of welfare is subject to the form of the bundle of labor and to the following

budget constraint:

Ct (j) + xt+1 (j) vt (j) (mt (j) + met (j)) = xt (j)mt

(
vt (j) + d̃t (j)

)
. (7)

In this equation, mt (j) and met (j) have already been defined, vt (j) is the value of human

capital and d̃t (j) =
∫ ∞

zmin
(wt (j, z) ℓt (j, z)− wt fnt) dM (z) denotes the average monopolistic profits

made by workers, and xt (j) is the share of the mutual fund held by household (j). Optimization

is also subject to the labor demand addressed to each individual with productivity z:

ℓt (j, z) =
(

wt (j, z)
Wt (j) z

)−θ

Lt (j) . (8)
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First-order conditions (FOCs) with respect to Ct (j), xt+1 (j) and wt (j, z) give:3

Ct (j)−σ = λt (j) , (9)

β
mt+1 (j)

mt (j) + met (j)
Et

{
λt+1 (j)
λt (j)

vt+1 (j) + d̃t+1 (j)
vt (j)

}
= 1, (10)

χLt (j)φ = Wt (j) λt (j) , (11)

where χ = ηθ/ (θ − 1) and where λt (j) is the marginal utility of consumption. Then selection in

the labor market takes place, and the threshold condition to work is given by:

wt (j, znt (j)) ℓt (j, znt (j)) = Wt(j) fnt, (12)

where znt (j) denotes the cut-off level of productivity above which household members choose to

work. This equation states that the last household member entering the labor market is produc-

tive enough for his labor income to cover the entry cost. Finally, entry incurs a once and for all

sunk costs fet (education, childcare), paid in units of basket of workers as defined by Equation

(2). As a consequence, the number of new family members is determined by the following free

entry condition:

vt(j) = Wt(j) fet. (13)

2.3 Aggregation

Individual-specific labor productivity z has a Pareto distribution with lower bound zmin and

shape parameter ε (1 + θφ) > θ − 1, where θ is the elasticity of substitution across the different

types of labor and φ the inverse of the Frisch elasticity of labor supply. The cumulative den-

sity function is M (z) = 1 − (zmin/z)ε. Let z̃t (j) be the average productivity across household

members and z̃nt (j) the average productivity across workers, both defined as:4

z̃t (j) =
[∫ ∞

zmin

z
θ−1

1+θφ dM (z)
] 1+θφ

θ−1

, z̃nt (j) =
[∫ ∞

znt(j)
z

θ−1
1+θφ

dM (z)
1 − M (znt)

] 1+θφ
θ−1

(14)

Average productivities are defined as harmonic means of individual productivities weighted

by the relative utility of hours worked.5 Given the Pareto distribution defined previously, average

3The FOC with respect to wt (j, z) is given by:

ηθ

θ − 1
zℓt (j, z)−

1
θ Lt (j)φ+ 1

θ = λt (j)wt (j, z) .

and plugging the labor demand equation (8), we get χLt (j)φ = Wt (j) λt (j).
4Proofs for aggregation results and procedures are given in Appendix A and B.
5Equivalently, we also have:

z̃−1
t =

∫ ∞

zmin

z−1
(

ℓt (z)
ℓt (z̃t)

)1+φ

µ (z) dz. (15)
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productivities z̃t (j) and z̃nt (j) are given by:

z̃t (j) = z̃ (j) = ∇zmin, z̃nt (j) = ∇znt (j) (16)

where ∇ =
(

ε(1+θφ)
ε(1+θφ)−(θ−1)

) 1+θφ
θ−1

. We express the variables using these average and define wt (j, z̃nt (j)) ≡
w̃nt (j) and ℓt (j, z̃nt (j)) ≡ ℓ̃nt (j). With the average dividend of workers such that dt (j, z̃nt (j)) ≡
d̃nt (j) = w̃nt (j) ℓ̃nt (j)− fnt, we can rewrite the cut-off condition (12) as:

w̃nt (j) ℓ̃nt (j) = ∇
θ(1+φ)
1+θφ wt fnt. (17)

Finally, once the threshold znt (j) is known, the number of labor-market participants is simply

given by nt (j) = (1 − M (znt (j)))mt (j) which is rewritten with the Pareto distribution as:

nt (j)
mt (j)

=

(
∇

z̃nt (j)

)ε

. (18)

Using the above notations, the average dividends across all individuals in household j is:

d̃t (j) =
nt (j)
mt (j)

d̃nt (j) (19)

.

In addition, the labor supply for the average level of productivity is expressed as:

χℓ̃nt (j)φ = w̃nt (j) λt (j) . (20)

Finally, the wage index and the basket of hours worked are:

Wt (j) = (nt (j) z̃nt (j))
1

1−θ w̃nt (j) /z̃nt (j) and Lt (j) = (nt (j) z̃nt (j))
θ

θ−1 ℓ̃nt (j) . (21)

2.4 General equilibrium

In equilibrium, all households are homogeneous and we drop household index j. Perfect

competition in goods market implies that Wt = at. The goods market clearing writes:6

Yt = Ct. (22)

The labor market clearing condition writes:

Lt =
Yt

at
+ nt fnt + met fet. (23)

6The same condition can be derived by aggregating the budget constraint (7) across individuals.
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Finally, we define the total factor productivity and GDP as:

TFPt = at (nt z̃nt)
θ

θ−1 , (24)

and

GDPt = WtLt. (25)

A summary of the model’s equilibrium condition and a derivation of the balanced-growth

steady-state conditions are given in Appendix C and D respectively.

3 Analytical results

The original model presented above is highly non-linear and impossible to analyze without

relying on numerical methods. However, we can gain intuition from looking at some analytical

results that can be derived under specific assumptions, i.e. with a constant death rate and infant

mortality rate, gδ = gτ = 1, where population dynamics simplifies.

Proposition 1 (Population and GDP per capita). Under gδ = gτ = 1, population m grows over time
(gm > 1) when:

g fe g
σ−1
σ+φ
a g

1
σ+φ
χ < 1, (26)

and GDP per capita grows over time (gGDP/m > 1) when:

gag fe > 1. (27)

Proof. See Appendix F.

Start with the simple case where g fe = gχ = 1, which corresponds to the standard neoclassical

growth model with human capital accumulation.

With only technological improvement (ga > 1) and the standard parameterization such that

σ > 1, total labor supply L decreases over time because of the wealth effect on labor supply driven

by improvements in technology. Accordingly, population m declines steadily. Put differently,

with economic growth, the sunk costs for newborns are increasing along with the increase in real

wages even with g fe = 1. The increase in costs is larger than the rise in the value of individual

human being (v) brought by a higher expected income due to the technological improvements.

As a result, newborns and thus populations must fall in equilibrium.

As expected, a decline in costs of raising newborns implying g fe < 1 contributes to popu-

lation growth. However, if the decline is too large, there is a risk for the economy to fall in a

Malthusian trap characterized by a stagnating or declining level of GDP per capita (gGDP/m ≤ 0).

In addition, a higher growth rate of the disutility of supplying labor (gχ > 1) works as a negative
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shock to labor supply, which in turn reduces total population. Further, when labor supply is

completely inelastic (φ = ∞) as in the Solow model, the growth rate of productivity does not

affect population growth. In this case, despite the improvement in technology, the labor supply

does not fall and, as a result, only g fe matters for population growth. Finally, note that under our

simplified assumptions, reforms on the labor market leading to changes ( fn) have no influence

on population growth, leading to the following corollary.

Corollary 1 (Neutrality of labor market reforms). Assuming gδ = gτ = 1, changes in the cost of
labor market participation ( fn) do not affect population growth.

Intuition is the following. All else equal, when labor market participation (n/m) increases, it

simultaneously reduces the average returns from human capital investments (d̃n). The interaction

of the two opposing forces keep the value of life v constant.

A second proposition characterizes the growth path of labor-market participation rate and

GDP per worker under our simplified assumptions.

Proposition 2 (Labor market participation rate and GDP per worker). Under gδ = gτ = 1, the
labor market participation rate n/m grows over time when:

g fe > g f n, (28)

and GDP per worker grows when:
gag fn > 1. (29)

Proof. See Appendix G.

When the cost of raising newborns g fe grows faster than the cost of participating in labor

market g fn , population increases at a lower rate than the number of workers, which raises the

labor-market participation rate (n/m) over time. Put differently, when this is the case, compe-

tition among potential workers in the labor market is not harsh and serves to increase labor

market participation. A similar intuition governs the second part of Proposition 2: for GDP per

worker to increase, productivity (which increases GDP) needs to grow more than participation

costs (that raise the number of workers).

Specifically, Proposition 1 and Proposition 2 indicate that a labor-market reform changing the

participation costs has no impact in improving GDP per capita since it is solely pinned down by

ga and g fe . Intuitively, when the participation increases, it necessarily provides incentive for less

efficient members to work, and thus the overall impact on GDP per capita is null. However, labor-

market reforms changing the participation cost induce distributional effects, as they determine

who works and who does not for the entire member of the society.

Finally, when the death rate δt or the infant mortality rate τt are no longer constant, the

above propositions are influenced by the impact of these two variables in general equilibrium.
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Their effects run through population dynamics and alter the path of aggregate macroeconomic

variables. It thus becomes impossible to get an analytical characterization of these interaction

and we have to rely on numerical solutions and simulations, as we do in the next sections.

4 Calibration and estimation

We calibrate the parameters of our model to fit post-war Japanese data. Specifically, we define

four sub-periods capturing distinct trends from 1970 to 2019, in line with Japan’s economic and

demographic shifts:

1. The first period, from 1970 to 1979, is characterized by a steady decline in the death rate.

2. The second period, from 1979 to 1991, is characterized by strong GDP growth, and aligns

with the mortgage bubble in Japan’s history, after which stagnation in both GDP and per

capita GDP growth was observed.

3. The third period, from 1991 to 2008, features continuous population growth, building on

previous trends.

4. The fourth period, from 2008 to 2019, is characterized by stagnating and then declining

population growth.

We assume that the discount factor (β), Frisch elasticity of labor supply, risk aversion (σ), the

elasticity of substitution between labor varieties (θ), and the Pareto shape parameter (ε) remain

constant over time and identical across the four periods.

The time unit is a quarter so that β = 0.99 implies an annual real interest rate of 4%. We

restrict the utility function so that σ = 1.5, assume a Frisch elasticity of φ−1 = 0.3333 and an

elasticity of substitution among workers with θ = 4. These values are in line with those used

in the literature such as Fujiwara et al. (2005) and Sugo and Ueda (2008). Kitao and Yamada

(2019) document the evolution of income dispersion in Japan in the post-war period using data

from the National Survey of Family Income and Expenditure. Accordingly, we set the Pareto

wage dispersion parameter to ε = 1.1409 to replicate the Survey values (see Appendix H for the

detailed mapping between income dispersion and our parameter ε). These parameter values are

summarized in Table 1 below.7

We calibrate the growth rate of the death rate (gδ) using directly observed data. The disutility

of supplying labor (χ, and consequently η, since χ = ηθ/ (θ − 1)) is assumed to remain constant

within each period (i.e., gχ = 1) but its level is adjusted.8

7We solve the model using the perturbation method with the RISE toolbox in MATLAB, as proposed by Maih
(2015).

8This assumption allows for a declining intensive margin of labor supply, consistent with observations in Japanese
data.
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Table 1: Calibration

β Discount factor 0.99
φ Inverse of elasticity of labor supply 3
σ Risk aversion 1.5
θ Elasticity of substitution among workers 4
ϵ Pareto shape 1.1409
fe Sunk costs for newborns (initial level) 1
a Technology (initial level) 1

We then estimate the growth rates of four parameters: the depreciation rate of newborns

(gτ), technology (ga), labor market participation costs (g fn ), and sunk costs in creating newborns

(g fe ), to match the observed growth rates of (a) population, (b) the employment rate, (c) GDP per

worker, and (d) GDP per capita for each time period defined above. Appendix E provides some

details about our calibration procedure and Table 2 summarizes the estimation results.

Table 2: Estimation

1970-1979 1979-1991 1991-2008 2008-2019
Data
gδ Growth rate of death rate 0.9861 1.0085 1.0172 1.0175
Adjusted
χ Disutility in supplying labor 2.0817 2.1479 5.0095 5.9118
Estimated
gτ Growth rate of Infant mortality rate 0.9862 0.9790 0.9929 0.9210
ga Growth rate of technology 1.0540 1.0524 1.0125 1.0098
g fn Growth rate of labor-market cost 0.9846 0.9794 0.9973 0.9911
g fe Growth rate of costs of raising newborns 1.0106 1.0160 1.0033 1.0168

5 Counterfactual experiments

We simulate the model using the parameter values presented in the previous section. Specifi-

cally, the steady state with growth is computed for each time period, from which we perform the

perfect-foresight simulation. After demonstrating the model’s fit with the data, we present fu-

ture projections of Japanese demographics and economic performance under different scenarios

involving technology, labor market reforms, and sunk costs for newborns.

5.1 Data vs. model

We start our analysis with a comparison between the theoretical model and the data. As

illustrated in Figure 1, the theoretical model fits the post-war Japanese data quite well. Notably,

the model accurately captures the trend dynamics of not only the targeted variables but also

non-targeted GDP per capita.
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Figure 1: Data vs. Model
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To replicate these dynamics, the model requires a secular decline in the depreciation rate of

newborns (τ) and labor-market participation costs ( fn), along with a secular increase in the sunk

entry costs for newborns ( fe) and technology (a) over the sample period. Importantly, the growth

rate of productivity becomes smaller after the collapse of the bubble economy in 1991.

Building on this benchmark simulation, we then proceed to conduct a counterfactual analysis

for the next 20 years (until around 2040). This analysis examines hypothetical scenarios involving

the growth rates of the calibrated and estimated parameters: ga, g fn , and g fe .

These future scenarios are presented under different assumptions about human capital depre-

ciation rates. The first assumption is that these rates remain constant after 2019, i.e., gτ = gδ = 1,

just as in Section 3. A more general case assumes that the growth rate of the depreciation rate

of newborns increases by 5 percentage points compared to the last period, while the growth rate

of the death rate decreases by 0.7 percentage points compared to the last period. These values

correspond to estimates of the future trajectories of infant mortality and death rates in Japan.9

9The parameter values align with forecasts by the National Institute of Population and Social Security Research.
Their projections suggest that the number of deaths will peak in 2043, while the death rate will peak later, in 2065, at
17.7, due to continued aging.
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5.2 Labor-market participation costs

Figure 2 illustrates three different scenarios for the Japanese economy under varying growth

rates of the fixed costs for labor-market participation (g fn ). The benchmark case, represented by

solid lines, assumes that the growth rates of exogenous parameters in the future period follow

the same trend as in the previous period. In contrast, we consider two alternative scenarios: one

where the growth rate of fn is one percentage point higher (dashed grey) and another where it

is one percentage point lower (dashed light grey) compared to the benchmark scenario.

We primarily focus on the case where gτ = gδ = 1 (panel (a)) to illustrate the basic intu-

ition of the model. As anticipated from Proposition 2 and the previous sections, changes in g fn

have no impact on population growth when gτ = gδ = 1. Since the number of newborns falls

proportionally, the birth rate (me/m) is constant over time.

Accordingly, the labor-market participation rate (n/m) decreases over time when costs are

higher, while it increases over time when costs are lower, relative to the benchmark case. Since

the population (m) continues to decline at the same rate across all scenarios, the changes in labor-

market participation are solely driven by variations in the number of workers (n). GDP and GDP

per capita (GDP/m) follow the same trajectory across all scenarios.

As a result, GDP per worker (GDP/n) undershoots its baseline trajectory in the lower-cost

scenario, while it increases in the higher-cost scenario. This occurs because an increase in labor-

market participation involves the entry of less efficient workers, leading to a decline in average

productivity, as reflected in GDP per worker.

In a more general case (panel (b) of Figure 2), where the death rate is increasing and the de-

preciation rate of newborns is further decreasing (gτ < 1 and gδ > 1), the dynamics with respect

to changes in the growth rate of labor market participation costs are shown to be qualitatively

similar.

5.3 Sunk Costs for Newborns

Next, we present future scenarios focusing on the sunk costs of raising newborns ( fe). In the

benchmark case, the growth rate of exogenous parameters is again assumed to follow the same

path as in the previous period (solid lines in Figure 3). For the alternative scenarios, we consider

cases where the growth rate of fe is higher by one percentage point (dashed grey) and lower by

one percentage point (dashed light grey).

As shown in Figure 3 (panel (a)), lower costs of raising newborns effectively mitigate the

decline in population (m). In this scenario, the population decline in the future periods is less

pronounced compared to the other cases.

However, the participation rate (n/m) decreases relative to the other scenarios, indicating that

the additional population growth primarily consists of individuals that do not participate in the

15



Figure 2: Labor-market participation costs
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(b) gτ < 1 and gδ > 1
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Solid black: baseline. Dashed grey: larger increase in labor-market participation cost. Dashed light grey: larger
decrease in labor-market participation cost.
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labor market. The working population remains as productive as in other scenarios since the Gross

Domestic Product (GDP) per worker (GDP/n) follows the same growth trajectory irrespective of

the different paths of the cost of raising newborns.

However, GDP per capita (GDP/m) grows less when total population declines more mildly,

compared to the other simulations. This occurs because a relatively smaller working population

must support a larger non-working population.

The question of whether higher birth rates are a viable solution for aging economies like

Japan remains a subject of public debate. Our simulation results help inform this debate and

suggest that increasing the birth rate by reducing sunk costs for newborns can indeed stimulate

population growth. However, this comes at the cost of a reduction in GDP per capita, assuming

all else remains equal.

These dynamics uncover an inherent tension between the working and non-working segments

of the population. However, exploring these socio-economic tensions falls outside the scope of

our current analysis.

In a more general case (panel (b)), where the death rate is increasing and the depreciation

rate of newborns is further decreasing (gτ < 1 and gδ > 1), the dynamics with respect to changes

in the growth rate of sunk costs for newborns are shown to be qualitatively similar.

5.4 Technology

Figure 4 now presents different scenarios for the future Japanese economy under three alter-

native growth rates of labor productivity (ga). The benchmark scenario, shown with solid lines,

assumes that technological growth continues to follow the same trend as in the previous period.

Dashed grey lines represent the scenario with a one percentage point higher growth rate of la-

bor productivity compared to the benchmark, while dashed light grey lines correspond to a one

percentage point lower growth rate.

When gτ = gδ = 1, the special case studied in Section 3, Proposition 1 concluded that

population declined further under a higher growth rate of labor productivity due to the wealth

effect on labor supply. This is confirmed looking at Figure 4 (panel (a)). Furthermore, consistent

with both Proposition 1 and Proposition 2, changes in the technological growth rate are neutral

with respect to the birth rate (me/m) and the employment rate (n/m). However, a higher growth

rate of technology leads to improvements in both GDP per working-age population (GDP/n)

and GDP per capita (GDP/m).

In the more general scenario where the growth rate of human capital depreciation satisfies

gτ < 1 and gδ > 1 (panel (b) in Figure 4), the model’s non-linearity becomes more pronounced.

Interestingly, under these conditions, higher technological growth can mitigate population de-

cline.
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Figure 3: Sunk costs of raising newborns
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Figure 4: Productivity
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6 Conclusion

In this paper, we investigate the relationship between demographic trends and economic

variables. Our analysis is based on a theoretical model that aligns with historical Japanese data

from the 1970s onward. The model highlights the critical role of demographic factors in shaping

economic trends, particularly through labor-market participation costs and the sunk costs of

raising children. These policy measures operate by influencing the number of individuals or

workers, thereby affecting macroeconomic aggregates.

The model also shows that changes in productivity directly affect both macroeconomic and

demographic variables in general equilibrium. In the most realistic scenario, faster productivity

growth can help mitigate population decline while increasing both GDP per capita and GDP per

worker. This suggests that policies aimed at fostering innovation can complement those designed

to curb population decline in aging economies.

Although our model does not explicitly address distributional consequences or inequality

among household members, it implicitly encompasses these aspects by assuming perfect con-

sumption risk sharing among productive (working) households and non-productive households.

Looking at the distributional consequences of aging, declining fertility and labor-market partici-

pation within our model is an interesting topic on its own that we leave for future research.

In addition, the role of migration, which can be considered isomorphic to the arrival of

newborns with different nationalities and potentially higher social costs, emerges as another

compelling direction for future research. Investigating this dimension could further enrich our

understanding of the demographic and economic interplay, especially in the context of an in-

creasingly globalized world.
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A Proof for aggregation

Let z̃t denote the average productivity of households, such that

Wt = (mt z̃t)
1

1−θ wt (z̃t) /z̃t (A.1)

Lt = (mt z̃t)
θ

θ−1 ℓt (z̃t) (A.2)

The labor supply condition in relative terms writes(
ℓt (z)
ℓt (z̃t)

)φ

=
wt (z)
wt (z̃t)

(A.3)

and the demand condition in relative terms writes

ℓt (z)
ℓt (z̃t)

=

(
wt (z) /z

wt (z̃t) /z̃t

)−θ

(A.4)

Combining gives:

wt (z)
wt (z̃t)

=

(
z
z̃t

) θφ
1+θφ

(A.5)

and
ℓt (z)
ℓt (z̃t)

=

(
z
z̃t

) θ
1+θφ

(A.6)

Plugging the above condition into the wage index expressed on the space of workers z (of

mass mt) — instead of the space of labor types ω — then gives

Wt =

[∫ ∞

zmin

z
(

wt (z)
z

)1−θ

mtµ (z) dz

] 1
1−θ

(A.7)

= (mt z̃t)
1

1−θ wt (z̃t) /z̃t︸                       ︷︷                       ︸
Wt

z̃
1

1+θφ

t

[∫ ∞

zmin

z
θ−1

1+θφ µ (z) dz
] 1

1−θ

(A.8)

which then implies

z̃t =

[∫ ∞

zmin

z
θ−1

1+θφ µ (z) dz
] 1+θφ

θ−1

(A.9)

or equivalently:

z̃−1
t =

∫ ∞

zmin

z−1
(
ℓt (z)
ℓt (z̃t)

)1+φ

µ (z) dz (A.10)
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B Aggregation

Here we show that the aggregate budget constraint is equivalent to the labor market clearing.

Aggregating the budget constraint across different households,

Ct + vt (mt + met) = mt

(
vt + d̃t

)
(B.1)

Plugging the expression of d̃t,

Ct + vtmet = ntd̃nt (B.2)

Plugging the expression of d̃nt,

Ct + vtmet = nt

(
w̃nt ℓ̃nt − Wt fnt

)
(B.3)

We have ntw̃nt ℓ̃nt = WtLt, so

Ct + vtmet = WtLt − ntWt fnt (B.4)

With Yt = Ct and vt = Wt fet

Yt + Wt fetmet = WtLt − ntWt fnt (B.5)

which, divided by Wt gives
Yt

Wt
+ fetmet = Lt − nt fnt (B.6)

with Wt = at and rearranging,

Lt =
Yt

at
+ nt fnt + met fet (B.7)
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C Model summary and reduction

The model boils down to:

Motion : mt+1 = (1 − δt)mt + (1 − τt)met (C.1)

Labor market clearing : Lt = Yt/at + nt fnt + met fet (C.2)

Wage : Wt = at (C.3)

Participation :
nt

mt
=

(
∇
z̃nt

)ε

(C.4)

ZCP : w̃nt ℓ̃nt = ∇
θ(1+φ)
1+θφ Wt fnt (C.5)

Av. dividends : d̃t =
nt

mt
d̃nt (C.6)

Av. dividends of workers : d̃nt = w̃nt ℓ̃nt − Wt fnt (C.7)

Free entry : vt = Wt fet (C.8)

Euler share : β
mt+1

mt + met
Et

{
λt+1

λt

vt+1 + d̃t+1

vt

}
= 1 (C.9)

Goods market clearing : Ct = Yt (C.10)

Labor supply : χLφ
t = Wtλt (C.11)

Wage index : Wt = (nt z̃nt)
1

1−θ w̃nt/z̃nt (C.12)

Hours basket : Lt = (nt z̃nt)
θ

θ−1 ℓ̃nt (C.13)

Marginal utility of C : λt = C−σ
t (C.14)

TFP : TFPt = at (nt z̃nt)
θ

θ−1 (C.15)

GDP : GDPt = WtLt (C.16)

(C.17)

D Steady State with Balanced Growth Path

We discuss the non-stochastic steady state, its reduced system and the solution. Plugging

the free entry and the average dividends of all household members in the steady state, the Euler

equation for share holdings becomes:

β
mt+1

mt + met
Et

{
λt+1

λt

Wt+1 fet+1 +
nt+1
mt+1

d̃nt+1

Wt fet

}
= 1. (D.1)

Also from the zero cut-off profit condition:

w̃nt l̃nt = ∇
θ(1+φ)
1+θφ Wt fnt, (D.2)
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and the average dividends of workers d̃nt = w̃nt l̃nt − Wt fnt in the steady state, we have:

d̃nt =

(
∇

θ(1+φ)
1+θφ − 1

)
Wt fnt.

Noting that nt
mt

=
(

∇
z̃nt

)ε
and Wt = at, the Euler equation for share holdings (D.1) is expressed

as: [
1 + met

mt

βgm

1
gλgw

− g fe

](
z̃nt+1

∇

)ε

=

(
∇

θ(1+φ)
1+θφ − 1

)
g f n

fnt

fet
.

Defining the steady-state growth rate of the average productivity as z̃nt+1/z̃nt = gz̃n and

rewriting the above equation, we get:

z̃ntgz̃n =


(
∇

θ(1+φ)
1+θφ − 1

)
g f n

fnt
fet

1
β(1−δt)

1
gλgw

− g fe


1
ε

∇.

Since we have with labor supply χtL
φ
t = Wtλt so we get gχgφ

L = gλgw, it becomes:

z̃ntgz̃n =


(
∇

θ(1+φ)
1+θφ − 1

)
g f n

fnt
fet

1+met
mt

βgm
1

gλgw
− g fe


1
ε

∇.

By dividing both sides by z̃nt−1gz̃n , the growth rate of the average productivity is expressed

as:

gz̃n =

 g f n

g fe

1+
met
mt

gme/m
βgm

1
gχgφ

L
− g fe

1+met
mt

βgm
1

gχgφ
L
− g fe


1
ε

. (D.3)

Next, with the labor supply equation χtL
φ
t = Wtλt and the definition of marginal utility of

consumption, λt = C−σ
t , we have:

Ct =

(
At

χtL
φ
t

) 1
σ

, (D.4)

and its growth rate is:

gC =

(
gA

gχgφ
L

) 1
σ

.

Further, using the definition of wage index ntw̃nt l̃nt = WtLt and the zero cut-off profit condi-
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tion (D.2), we have:

nt =
Lt

∇
θ(1+φ)
1+θφ fnt

. (D.5)

gn =
gL

g fn

. (D.6)

Also using the Pareto distribution, the labor market participation rate is expressed as:

nt

mt
=

(
z̃nt

∇

)−ε

. (D.7)

Thus, we get:

gm/n = gε
z̃n

.

Furthermore, from the motion mt+1 = (1 − δt)mt + (1 − τt)met, we get:

met

mt
=

gm

1 − τt
− 1 − δt

1 − τt
.

Thus its growth rate is defined as:

gme/m =

gm
1−τt

− 1−δt
1−τt

gm

1− τt
gτ

−
1− δt

gδ

1− τt
gτ

.

Plugging the above expressions, in the labor market clearing condition, L = y
a + n fn + me fe,

we have:

Lt =

A
1
σ−1
t

χ
1
σ
t

1

1 −
1+met

mt

(
z̃nt
∇

)ε fet
fnt

∇
θ(1+φ)
1+θφ


1

1+ φ
σ

.

The growth rate of labor supply is therefore:

g1+ φ
σ

L =
g

1
σ−1
A

g
1
σ
χ

1 −
1+met

mt
fet
fnt

g f n
gme/m g fe

(
z̃nt
∇

1
gz̃n

)ε

∇
θ(1+φ)
1+θφ

1 −
1+met

nt

(
z̃nt
∇

)ε fet
fnt

∇
θ(1+φ)
1+θφ

. (D.8)

Table 3 summarizes the equation at the steady state. There are 26 equations. Endogenously

determined variables are met
mt

, nt
mt

, mt, Lt, z̃nt, l̃nt, nt, Ct, d̃nt, Wt, GDPt, GDPt
mt

, GDPt
nt

and their growth

rates.
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Table 3: Balanced-growth steady state

Steady state Growth rate
met
mt

= gm
1−τt

− 1−δt
1−τt

gme/m =
gm

1−τt
− 1−δt

1−τt

gm
1− τt

gτ

−
1− δt

gδ

1− τt
gτ

nt
mt

=
(

z̃nt
∇

)−ε
gn/m = g−ε

z̃n

mt = nt

(
z̃nt
∇

)ε
gm = gngε

z̃n

Lt =

 A
1
σ −1
t

χ
1
σ
t

1

1−
1+

met
mt

(
z̃nt
∇

)ε fet
fnt

∇
θ(1+φ)
1+θφ


1

1+ φ
σ

gL =

 g
1
σ −1
A

g
1
σ
χ

1−
1+

met
mt

fet
fnt

g f n
gme/m g fe

(
z̃nt
∇

1
gz̃n

)ε

∇
θ(1+φ)
1+θφ

1−
1+

met
nt

(
z̃nt
∇

)ε fet
fnt

∇
θ(1+φ)
1+θφ


1

1+ φ
σ

z̃nt =


(
∇

θ(1+φ)
1+θφ −1

)
g f n

fnt
fet

1+
met
mt

βgm
1

gχ gφ
L
−g fe


1
ε

∇
gz̃n

gz̃n =

 g f n
g fe

1+

met
mt

gme/m
βgm

1
gχ gφ

L
−g fe

1+
met
mt

βgm
1

gχ gφ
L
−g fe


1
ε

l̃nt = (nt z̃nt)
− θ

θ−1 Lt gl̃n
=
(

g fn
gz̃n

) θ
θ−1 g

1− θ
θ−1

L

nt =
Lt

∇
θ(1+φ)
1+θφ fnt

gn = gL
g fn

Ct =
(

At
χt Lφ

t

) 1
σ gC =

(
gA

gχgφ
L

) 1
σ

d̃nt =

(
∇

θ(1+φ)
1+θφ − 1

)
Wt fnt gd̃n

= gW g fn

Wt = at gW = ga
GDPt = WtLt gGDP = gW gL
GDPt

mt
= Wt Lt

mt
gGDP/m = gagL

gm
GDPt

nt
= Wt Lt

nt
gGDP/n = gagL

gn
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E Calibration

Our calibration strategy is as the following. We target the following growth rates gGDP/n,

gme/m, gn/m and gm. These values are function of structural parameters including the growth

rates of g fn ,g fe , gχ, gδ and gA. A first group of parameters is calibrated based on the values found

in the literature or based on Japanese data or normalized without loss of generality. A second

group of parameters namely, gδ is computed from the theoretical relations: met
mt

= gm
1−δt

− 1 and

gme/m =
gm

1−δt
−1

gm

1− δt
gδ

−1
given the values of met

mt
, gm and gme/m implied by post-war Japanese data. A

third group of parameters, gA, g fn ,g fe , and χ (which is “adjusted” to imply Lt = 1) are estimated

to minimize the distance between the weighted average of gGDP/n, gme/m, gn/m and gm in the

data and the implied growth rates predicted by the model. Namely, we minimize the following

objective function to estimate the parameters on the four periods:

min
gA,g fn ,g fe ,χt

(
1
4
(gGDP/n − ḡGDP/n) +

1
4
(gme/m − ḡme/m) +

1
4
(gn/m − ḡn/m) +

1
4
(gm − ḡm)

)

F Proof of Proposition 1

By combining the expressions in Table 3, we get gm = gngε
z̃n

= gL
g fn

gε
z̃n

. Further, this is ex-

pressed as:

gm =

 g
1
σ −1
A

g
1
σ
χ

1−
1+

met
mt

fet
fnt

g f n
gme/m g fe

(
z̃nt
∇

1
gz̃n

)ε

∇
θ(1+φ)
1+θφ

1−
1+

met
nt

fet
fnt

(
z̃nt
∇

)ε

∇
θ(1+φ)
1+θφ


1

1+ φ
σ

g fn

gε
z̃n

.

With gδ = gτ = 1, we have gme/m = 1. Note also that:

gz̃n =

 g f n

g fe

1+
met
mt

gme/m
βgm

1
gχgφ

L
− g fe

1+met
mt

βgm
1

gχgφ
L
− g fe


1
ε

.

So with gδ = gτ = 1, we have gz̃n =
(

g f n
g fe

) 1
ε
. This implies:

gm =

[
g

1
σ −1
a

g
1
σ
χ

] 1
1+ φ

σ

g fe

.
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So the condition of population growth such that gm > 1 is:

g fe g
σ−1
σ+φ
a g

1
σ+φ
χ < 1

Also GDP per capita is expressed as:

gGDP/m =
gag fn g f n

g fe

1+

met
mt

gme/m
βgm

1
gχ gφ

L
−g fe

1+
met
mt

βgm
1

gχ gφ
L
−g fe


.

With gδ = gτ = 1, we have gme/m = 1. The condition at which GDP per capita grows

(gGDP/m > 1) is given by:

gag fe > 1.

G Proof of Proposition 2

By combining the expressions in Table 3, the labor market participation rate is:

gn/m = g−ε
z̃n

With gδ = gτ = 1, we have gme/m = 1 and thus gz̃n =
(

g f n
g fe

) 1
ε
. Thus, the above expression is:

gn/m =
g fe

g f n
.

So the condition under which the labor market participation rate increases over time (gn/m >

1) is:

g fe > g f n.

Also GDP per worker is:

gGDP/n =
gagL

gn
=

gagL
gL
g fn

= gag fn .

So the condition under which GDP per worker grows is:

gag fn > 1.

The above condition holds independently the value of gδ.
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H Income distribution

We characterize the relation between wage income distribution and the distribution of the

idiosyncratic productivity level z. The FOC with respect to wt (j, z) is given by:

ηθ

θ − 1
zlt (j, z)−

1
θ Ht (j)φ+ 1

θ = λt (j)wt (j, z) .

Plugging the labor demand lt (j, z) =
(

wt(j,z)
Wt(j)z

)−θ
Lt (j), we get:

wt (j, z) lt (j, z) = wt (j, z)1−θ zθ

[
ηθ

θ − 1
Wθ−1

t (j)
Lt (j)φ+ 1

θ

λt (j)

]
.

Further we have:
wt (j, z)
wt (z̃t)

=

(
z
z̃t

) θφ
1+θφ

.

Thus,

wt (j, z) lt (j, z) = z
(

φ(1−θ)
1+θφ +1

)
θ

[
ηθ

θ − 1
z̃
− θφ(1−θ)

1+θφ

t

(
wt (z̃t)

Wt (j)

)1−θ Lt (j)φ+ 1
θ

λt (j)

]
.

The term in the square bracket is independent of z. In equilibrium, households are symmetric

and we thus drop the index j. Further, we know that the log of z has the standard deviation of 1/ε

since z follows a Pareto distribution with the shape coefficient ε. Finally, the standard deviation

of the log of wage income is given by:

Std [log wt (z) lt (z)] =
(

φ + 1
1 + θφ

)
θ

ε
.

For the purpose of calibration, we back out the value of ε as:

ε =

(
φ + 1

1 + θφ

)
θ

Std [log wt (z) lt (z)]
.

For the empirical standard deviation, we use the National Survey of Family Income and

Expenditure (NSFIE) data from Japan, as provided by Kitao and Yamada (2019). Specifically, we

calculate the average standard deviation of log incomes for the years 1984, 1989, 1994, 1999, 2004,

2009, and 2014. We prefer using the income distribution, which potentially includes sources of

income beyond just wage income, over the earnings distribution due to greater data coverage.

The income distribution covers the entire range from the botttom to the top 1%, whereas the

earnings distribution is only available for the top 40 % and higher.
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