

Excessive Focus on Risk? Nonperforming Loans and Efficiency of Microfinance Institutions

Stephen Zamore, Roy Mersland & Leif Atle Beisland University of Agder, Kristiansand

How is this possible?

Operational Expensens in percent of Total Assets for MFIs

Why is not the microfinance market experiencing the same efficiency trend as other banking markets?

High operating costs pushes MFIs away from their target clientele (Mersland & Strøm, 2010)

	Fixed effects						
	Unstandardized	Standardized					
Constant							
Average profit	3.032	0.537					
Average cost	3.870**	0.851					
PaR 30	2.733	0.269					
MFI age	0.021	0.147					
Assets	0.001	0.010					
Wald (F) test sign.	0.000	0.000					
The Hansen J test	0.771	0.771					
N (firm years)	741	741					

Table 5. Are average profit, cost, and risk related to the 1

The average loan size in rated microfinance institutions (MFIs) regressed on profit function va-

High operating costs drive the high interest rates in microfinance. Typical example of an MFI's numbers

Basic accounting	Example in % over portfolio
Interest and other income (Yield)	40%
- Funding costs	10%
- Operating costs	25%
 Provision costs (potential losses) 	3%
= Profit	2%

Why care so much about loan default?

Is there a u-curve in microlending?

How Americans Rate Their Happiness, By Age

Is there a u-curve in microlending? An optimal level of default in relation to costs?

How Americans Rate Their Happiness, By Age

Data & Methodology

Research question: Do non-performing loans influence operating costs of microfinance institutions?

Introduction

Motivation

Introduction

- Problems with Development
 Finance Institutions (1950s 1980s)
- Repayment rates <50%:
 - "disappointing" (Adam etal., 1984, p.1)
 - 100 % failure rate in Africa (Thillairajah, 1994)

The more you know about the past, the better prepared you are for the future.

Results

Data &

~Theodore Roosevelt

Data &

3

Results

Introduction continued.

Motivation

Introduction

- Microfinance emerged (1970s) as a solution
 - Group lending
 - Progressive lending

But focused on access to credit

Prioritising women

8

Armendáriz & Morduch (2010); Karlan & Goldberg (2011)

Data & Methodolog

Monitoring

Results

Motivation

Screening

Introduction

Lending model: relationship banking

Research problem:

Introduction

- cost and default relationship,
- established in banking
 - e.g. Berger & DeYoung, 1997, Williams, 2004; Fiordelisi et al., 2011
- nonexistent in MF research

Results

Data &

Relevance

- High interest rate
 - Microfinance reputation (Bateman, 2010).
- Possible elimination of very poor
 - most vulnerable (Amin et al., 2003; Pearlman, 2012).
- Sustainable industry

Data & Methodology

Results

- Lessons from banking literature:
- Relationship banking
 - Bharath et al., 2011; Boot, 2000; Petersen & Rajan, 1994
- Banking literature
 - Berger & DeYoung (1997)

Literature

Data &

Results

- H2: positive relationship between NPLs and efficiency of MFIs.
- Non-linear relationship?

Introduction

- Sample:
- 607 rated MFIs in 87 countries
- Time period: 1998-2015
- Methodology
- Battese and Coelli (1995) one-step stochastic frontier analysis
- Greene (2005) true fixed-effects SFA model
- GMM (endogeneity and reversed causality), pooled OLS and simple fixed effects as robustness checks

- What we do:
 - Estimate a cost function
 - Use stochastic frontier analysis to estimate which factors drive MFIs away from the optimal cost function
- We find:
 - Increased risk levels drive up operational cost levels (linear)
- However:
 - "Too low" risk also drives up operational costs (curve-linear)

The trouble with our finding

- The optimal level of risk is on average very low
 - PaR30 1-2%
- Thus, most MFIs will benefit (reduce their operational costs) by further reducing their risk

 U-shaped relationship between non-performing loans and cost efficiency,

Conclusion

- contrary to linear findings in regular banking
- Lesson for practice.
 - balance operational efficiency and risk
 - Low risk: streamline selection, monitoring & collection activities.
 - High risk: install strict screening, monitoring & collection procedures

Conclusion

- Generally, the high operational costs can not be «fixed» by increasing risk levels
- Thus, high operational cost must be «attacked» from other angles
 - Big data?
 - Scoring?

Background	Introduction	Literature	Data &		Results
			Methodology		
		(1	.)	(2)	(3)
Panel B: Inefficiency equation					
Portfolio at risk		-0.083	\$7***	-0.2886**	-0.2231**
		(0.03	313)	(0.1153)	(0.1136)
Portfolio at risk	<u>~</u> 2	0.002	21**	0.0090***	0.0070**
		(0.00	009)	(0.0030)	(0.0028)
MFI age		0.108	5***	0.1192***	0.0429
		(0.01	165)	(0.0348)	(0.0356)
Shareholder MI	FI	0.897	3***	-7.0146	-17.8349
		(0.19	9 63)	(24.3242)	(32.5952)
Group loans		-0.695	57***	-0.8152	-0.8895**
-		(0.21	116)	(0.5163)	(0.4247)
Urban market		-0.3	038	-3.1463	-3.3499**
		(0.18	373)	(2.0537)	(1.5529)
Rural market		-16.0)346	-28.3245	-56.7368
		(0.00)00)	(14.2843)	(0.0000)
MFI size		1.707	0***	-0.0567	-0.1620
		(0.10)10)	(0.1952)	(0.1891)
Constant		-28.92	94***	-3.7865	-0.7260
		(1.63	391)	(3.2722)	(3.1385)
Observations		1,5	77	1,483	1,595
Number of MFIs		40	00	306	330
Wald chi-square		3433.3	32***	11371.01***	10168.22***
Log likelihood		-842	2.27	225.24	137.63
Estimation meth	hod	Rano	dom	True fixed	True fixed
		effe	ects	effects	effects